The enigmatic role of HLA-B*27 in spondyloarthritis pathogenesis.

Semin Immunopathol

Pediatric Translational Research Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD, USA.

Published: April 2021

Establishing a clear role for HLA-B*27 in the pathogenesis of spondyloarthritis continues to be challenging. Aberrant properties of the heavy chain as well as a potential role presenting arthritogenic peptides continue to be pursued as plausible mechanisms. Recent studies implicate HLA-B*27 in aberrant bone formation. An unanticipated cell surface interaction between HLA-B*27 and the bone morphogenetic protein pathway receptor subunit ALK2 may augment TGFβ superfamily signaling pathways, increasing responsiveness to Activin A and TGFβ. This has the potential to increase bone formation as well as Th17 T cell development, presenting an attractive model to explain several aspects of axial and peripheral spondyloarthritis. In a separate study, intracellular effects of misfolded HLA-B*27 implicate this mechanism in increased osteoblast mineralization and bone formation. HLA-B*27 expression in early osteoblasts activates unfolded protein response-mediated X-box binding protein-1 mRNA splicing and induction of the retinoic acid receptor-β gene, with downstream increases in expression of tissue non-specific alkaline phosphatase. Increased TNAP expression in osteoblasts was linked to increased mineralization in vitro and bone formation in vivo. In the ongoing search for evidence of arthritogenic peptides, high-throughput TCR (T cell receptor) sequencing has provided evidence for reduced clonal expansion and increased TCR diversity in ankylosing spondylitis. In addition to two common CD8+ TCR sequences identified in one study, similar CD8 and CD4 TCR motifs were found in another study. Further work will be needed to shed light on the nature of the peptide-HLA class I complex recognized by these T cells and its role in disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00281-021-00838-zDOI Listing

Publication Analysis

Top Keywords

bone formation
16
role hla-b*27
8
arthritogenic peptides
8
hla-b*27
6
bone
5
enigmatic role
4
hla-b*27 spondyloarthritis
4
spondyloarthritis pathogenesis
4
pathogenesis establishing
4
establishing clear
4

Similar Publications

Objectives: This study aims to evaluate the changes in the mandibular canal following the treatment of large odontogenic keratocysts through decompression and curettage, providing a theoretical basis for sequential treatment.

Methods: Twenty patients were selected for each decompression and curettage treatment of large odontogenic keratocysts in the mandible. Postoperative follow-up with was conducted every three months, during which cone beam computed tomography (CBCT) scans were performed.

View Article and Find Full Text PDF

Bioactive glass 45S5 promotes odontogenic differentiation of apical papilla cells through autophagy.

Hua Xi Kou Qiang Yi Xue Za Zhi

February 2025

Dept. of Cariology and Endodontics, Binzhou Medical University Hospital, Binzhou 256600, China.

Objectives: The mechanism of the odontogenic differentiation of apical papillary cells (APCs) stimulated by bioactive glass 45S5 is still unclear. This study aims to investigate the effect of autophagy on the odontogenic differentiation of APCs stimulated by bioactive glass 45S5.

Methods: APCs were isolated and cultured , and the cell origin was identified by flow cytometry.

View Article and Find Full Text PDF

The Masquelet technique that combines a foreign body reaction (FBR)-induced vascularized tissue membrane with staged bone grafting for reconstruction of segmental bone defect has gained wide attention in Orthopedic surgery. The success of Masquelet hinges on its ability to promote formation of a "periosteum-like" FBR-induced membrane at the bone defect site. Inspired by Masquelet's technique, here a novel approach is devised to create periosteum mimetics from decellularized extracellular matrix (dECM), engineered in vivo through FBR, for reconstruction of segmental bone defects.

View Article and Find Full Text PDF

Programmed Transformation of Osteogenesis Microenvironment by a Multifunctional Hydrogel to Enhance Repair of Infectious Bone Defects.

Adv Sci (Weinh)

January 2025

Orthopedic Institute, Department of Orthopedic Surgery, Medical 3D Printing Center, The First Affiliated Hospital, Changzhou Geriatric hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China.

Repair of infectious bone defects remains a serious problem in clinical practice owing to the high risk of infection and excessive reactive oxygen species (ROS) during the early stage, and the residual bacteria and delayed Osseo integrated interface in the later stage, which jointly creates a complex and dynamic microenvironment and leads to bone non-union. The melatonin carbon dots (MCDs) possess antibacterial and osteogenesis abilities, greatly simplifying the composition of a multifunctional material. Therefore, a multifunctional hydrogel containing MCDs (GH-MCD) is developed to meet the multi-stage and complex repair needs of infectious bone injury in this study.

View Article and Find Full Text PDF

The rapid and efficient bone regeneration is still in unsatisfactory outcomes, demonstrating alternative strategy and molecular mechanism is necessary. Nanoscale biomaterials have shown some promising results in enhancing bone regeneration, however, the detailed interaction mechanism between nanomaterial and cells/tissue formation is not clear. Herein, a molecular-based inorganic-organic nanomaterial poly(citrate-siloxane) (PCS) is reported which can rapidly enhance osteogenic differentiation and bone formation through a special interaction with the cellular surface communication network factor 3 (CCN3), further activating the Wnt10b/β-catenin signaling pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!