Relaxed tarantula skeletal muscle has two ATP energy-saving mechanisms.

J Gen Physiol

Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA.

Published: March 2021

Myosin molecules in the relaxed thick filaments of striated muscle have a helical arrangement in which the heads of each molecule interact with each other, forming the interacting-heads motif (IHM). In relaxed mammalian skeletal muscle, this helical ordering occurs only at temperatures >20°C and is disrupted when temperature is decreased. Recent x-ray diffraction studies of live tarantula skeletal muscle have suggested that the two myosin heads of the IHM (blocked heads [BHs] and free heads [FHs]) have very different roles and dynamics during contraction. Here, we explore temperature-induced changes in the BHs and FHs in relaxed tarantula skeletal muscle. We find a change with decreasing temperature that is similar to that in mammals, while increasing temperature induces a different behavior in the heads. At 22.5°C, the BHs and FHs containing ADP.Pi are fully helically organized, but they become progressively disordered as temperature is lowered or raised. Our interpretation suggests that at low temperature, while the BHs remain ordered the FHs become disordered due to transition of the heads to a straight conformation containing Mg.ATP. Above 27.5°C, the nucleotide remains as ADP.Pi, but while BHs remain ordered, half of the FHs become progressively disordered, released semipermanently at a midway distance to the thin filaments while the remaining FHs are docked as swaying heads. We propose a thermosensing mechanism for tarantula skeletal muscle to explain these changes. Our results suggest that tarantula skeletal muscle thick filaments, in addition to having a superrelaxation-based ATP energy-saving mechanism in the range of 8.5-40°C, also exhibit energy saving at lower temperatures (<22.5°C), similar to the proposed refractory state in mammals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822627PMC
http://dx.doi.org/10.1085/jgp.202012780DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
24
tarantula skeletal
20
relaxed tarantula
8
atp energy-saving
8
thick filaments
8
muscle helical
8
bhs fhs
8
progressively disordered
8
bhs remain
8
remain ordered
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!