Strain-engineering of bimetallic nanomaterials is an important design strategy for developing new catalysts. Herein, we introduce an approach for including strain effects into a recently introduced, density functional theory (DFT)-based alloy stability model. The model predicts adsorption site stabilities in nanoparticles and connects these site stabilities with catalytic reactivity and selectivity. Strain-based dependencies will increase the model's accuracy for nanoparticles affected by finite-size effects. In addition to the stability of small nanoparticles, strain also influences the heat of adsorption of epitaxially grown metal-on-metal adlayers. In this respect, we successfully benchmark the strain-including alloy stability model with previous experimentally determined trends in the heats of adsorption of Au and Cu adlayers on Pt (111). For these systems, our model predicts stronger bimetallic interactions in the first monolayer than monometallic interactions in the second monolayer. We explicitly quantify the interplay between destabilizing strain effects and the energy gained by forming new metal-metal bonds. While tensile strain in the first Cu monolayer significantly destabilizes the adsorption strength, compressive strain in the first Au monolayer has a minimal impact on the heat of adsorption. Hence, this study introduces and, by comparison with previous experiments, validates an efficient DFT-based approach for strain-engineering the stability, and, in turn, the catalytic performance, of active sites in bimetallic alloys with atomic level resolution.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5130566DOI Listing

Publication Analysis

Top Keywords

strain effects
8
alloy stability
8
stability model
8
model predicts
8
site stabilities
8
heat adsorption
8
strain monolayer
8
strain
6
adsorption
5
predicting metal-metal
4

Similar Publications

The failure of locked-segment landslides is associated with the destruction of locked segments that exhibit an energy accumulation effect. Thus, understanding their failure mode and instability mechanism for landslide hazard prevention and control is critical. In this paper, multiple instruments, such as tilt sensors, pore water pressure gauges, moisture sensors, matrix suction sensors, resistance strain gauges, miniature earth pressure sensors, a three-dimensional (3D) laser scanner, and a camera, were used to conduct the physical model tests on the rainfall-induced arch locked-segment landslide to analyze the resulting tilting deformation and evolution mechanism.

View Article and Find Full Text PDF

Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly.

View Article and Find Full Text PDF

Propidium Monoazide is Unreliable for Quantitative Live-Dead Molecular Assays.

Anal Chem

January 2025

Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States.

Propidium monoazide (PMA) is a dye that distinguishes between live and dead cells in molecular assays like the Polymerase Chain Reaction (PCR). It works by cross-linking to the DNA of cells that have compromised membranes or extracellular DNA upon photoactivation, making the DNA inaccessible for amplification. Currently, PMA is used to detect viable pathogens and alleviate systemic bias in the microbiome analysis of samples using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Comparison of MIC Test Strip and reference broth microdilution method for amphotericin B and azoles susceptibility testing on wild type and non-wild type Aspergillus species.

Med Mycol

January 2025

Laboratorio de Investigación y Desarrollo en Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina.

This study was performed to evaluate whether the MIC Test Strip (MTS) quantitative assay for determining the minimum inhibitory concentration (MIC) correlated with the CLSI reference broth microdilution method (BMD) for antifungal susceptibility testing of wild-type and non-wild-type Aspergillus species isolated from cystic fibrosis patients against antifungal agents known to be usually effective against Aspergillus spp. This study was performed to assist in the decision-making process for possible deployment of the MTS assay for antimicrobial susceptibility testing of Aspergillus species into regional public health laboratories of Mycology due to difficulties in equipping the reference BMD methods in a laboratory routine. For this purpose, a set of 40 phenotypically diverse isolates (27 wild-type, 9 non-wild-type, and 4 species with reduced susceptibility to azoles and amphotericin B (AMB)) collected from clinical samples were tested.

View Article and Find Full Text PDF

Growth inhibition by ppc deletion is rescued by isocitrate dehydrogenase mutations in Escherichia coli.

FEMS Microbiol Lett

January 2025

Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.

Phosphoenolpyruvate carboxylase encoded by ppc catalyzes the anaplerotic reaction of oxaloacetate in the TCA cycle in Escherichia coli. Deletion of ppc does not prevent the cells from replenishing oxaloacetate via the glyoxylate shunt, but the ppc-deletion strain almost did not grow on glucose. In the present study, we obtained evolved strains by deleting both ppc and mutS to increase the mutation rate and investigated the mechanisms for improving growth by analyzing the mutated genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!