A novel ternary nitride semiconductor, CaSnN, with a layered rock-salt-type structure (3̅) was synthesized via a high-pressure metathesis reaction. The properties and structures of II-Sn-N (II = Ca, Mg, Zn) semiconductors were also systematically studied, and the differences among them were revealed by comparison. These semiconductor materials showed a rock-salt- or wurtzite-type structure depending on the combined effect of the synthetic conditions and the characteristics of the group II elements. Additionally, the rock-salt-type structures of CaSnN and MgSnN (i.e., the ambient-pressure phase) were different from those predicted using first-principles calculations. Further, on the basis of first-principles calculations and consideration of the pressure effect, the recovered CaSnN sample showed an 3̅ structure. CaSnN and MgSnN showed a band gap of 2.3-2.4 eV, which is suitable for overcoming the green-light-gap problem. These semiconductors also showed a strong cathode luminescence peak at room temperature, and generalized gradient approximation (GGA) calculations revealed that CaSnN has a direct band gap. These inexpensive and nontoxic semiconductors (II-Sn-N semiconductors (II = Ca, Mg, Zn)), with mid band gaps are required as pigments to replace cadmium-based materials. They can also be used in emitting devices and as photovoltaic absorbers, replacing InGaN semiconductors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.0c03242DOI Listing

Publication Analysis

Top Keywords

ii-sn-n semiconductors
12
high-pressure metathesis
8
metathesis reaction
8
reaction properties
8
casnn mgsnn
8
first-principles calculations
8
band gap
8
semiconductors
6
casnn
5
synthesis casnn
4

Similar Publications

Charge transport in materials has an impact on a wide range of devices based on semiconductor, battery, or superconductor technology. Charge transport in sliding charge density waves (CDW) differs from all others in that the atomic lattice is directly involved in the transport process. To obtain an overall picture of the structural changes associated to the collective transport, the large coherent x-ray beam generated by an x-ray free-electron laser (XFEL) source was used.

View Article and Find Full Text PDF

Excitons, which are Coulomb bound electron-hole pairs, are composite bosons and thus at low temperature can form a superfluid state with a single well-defined amplitude and phase. We directly image this macroscopic exciton superfluid state in an hBN-separated MoSe-WSe heterostructure. At high density, we identify quasi-long-range order over the entire active area of our sample, through spatially resolved coherence measurements.

View Article and Find Full Text PDF

An Automated Workflow to Discover the Structure-Stability Relations for Radiation Hard Molecular Semiconductors.

J Am Chem Soc

January 2025

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany.

Emerging photovoltaics for outer space applications are one of the many examples where radiation hard molecular semiconductors are essential. However, due to a lack of general design principles, their resilience against extra-terrestrial high-energy radiation can currently not be predicted. In this work, the discovery of radiation hard materials is accelerated by combining the strengths of high-throughput, lab automation and machine learning.

View Article and Find Full Text PDF

Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals.

View Article and Find Full Text PDF

Achieving Superior Thermoelectric Performance in Methoxy-Functionalized MXenes: The Role of Organic Functionalization.

ACS Appl Mater Interfaces

January 2025

College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.

Thermoelectric technology enables the direct and reversible conversion of heat into electrical energy without air pollution. Herein, the stability, electronic structure, and thermoelectric properties of methoxy-functionalized MC(OMe) (M = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, and W) were systematically investigated using first-principles calculations and semiclassical Boltzmann transport theory. All MXenes, except those with M = Cr, Mo, and W, can be synthesized by substituting Cl- and Br-functionalized MXenes with deprotonated methanol, with stability governed by the M-O bond strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!