Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This work demonstrates the fabrication of surface-textured microcapsules formed from emulsion droplets, which are stabilized by an interlocking mesh of needle-like crystals. Crystals of the small-organic-compound decane-1,10-bis(cyclohexyl carbamate) are formed within the geometric confinement of the droplets, through precipitation from a binary-solvent-dispersed phase. This binary mixture consists of a volatile solvent and nonvolatile carrier oil. Crystallization is facilitated upon supersaturation due to evaporation of the volatile solvent. Microcapsule diameter can be easily tuned using microfluidics. This approach also proves to be scalable when using conventional mixers, yielding spikey microcapsules with diameters in the range of 10-50 μm. It is highlighted that the capsule shape can be molded and arrested by jamming using recrystallization in geometric confinement. Moreover, it is shown that these textured microcapsules show a promising enhanced deposition onto a range of fabric fibers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c22378 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!