Despite tremendous complexity in glycan structure, sialic acid (SA) provides an analytically accessible index for glycosylation, owing to its uniquely anionic nature and glycan-chain terminal occupation. Taking advantage of boronic acid (BA) based SA-recognition chemistry, we here demonstrate a label-free, no enzymatic, potentiometric determination of fetuin, a blood-circulating glycoprotein implicated in physiological and various pathological states. A phenylboronic acid (PBA) ω-end-functionalized poly(ethylene glycol) (PEG) with an α-tethering unit bearing pendent alkyne groups was "grafted-to" a gold electrode modified with 11-azide-undecathiol by a copper-catalyzed azide-alkyne cycloaddition reaction. Using the electrode, fetuin was potentiometrically detectable with a μM-order-sensitivity that is comparable to what is found in blood-collected specimen. Our finding may have implications for developing a remarkably economic hemodiagnostic technology with ease of downsizing and mass production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.bioconjchem.0c00657 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!