Antimicrobial resistant (AMR) infections are a growing threat to public health and there is a general lack of development in new antibiotics. Here, a dextran-coated stimuli-responsive nanoparticle (NP) that encapsulates the hydrophobic antibiotic, rifampicin, and specifically binds bacteria to overcome AMR infections is reported. The NP shows a strong affinity with a variety of pathogens in vitro and effectively accumulates in the bacterial infected tissues. The NP is activated by either low pH or high reactive oxygen species in the infectious microenvironment, and releases both cationic polymer and rifampicin that display synergistic activity against AMR pathogens. The NP carrier also enables the antibiotic to penetrate both bacterial biofilms and mammalian cells, thus allowing the elimination of biofilm and intracellular infections. The NP formulation demonstrates both safety and efficacy in two animal infection models against either Gram-negative or Gram-positive AMR pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202006772 | DOI Listing |
Small Methods
January 2025
Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.
Antimicrobial resistance (AMR) has emerged as a global challenge in treating bacterial infections, creating an urgent need for broad-spectrum antimicrobial agents that can effectively combat multidrug-resistant (MDR) bacteria. Despite advancements in novel antimicrobial agents, many fail to comprehensively cover common resistant bacterial strains or undergo rigorous multi-center validation. Herein, a cationic AIE-active photosensitizers are developed, ITPM, derived from a triphenylamine-pyridine backbone to address the MDR challenge.
View Article and Find Full Text PDFBMC Genomics
January 2025
Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Rotterdam, The Netherlands.
Background: The Joint Programming Initiative on Antimicrobial Resistance (JPIAMR) networks 'Seq4AMR' and 'B2B2B AMR Dx' were established to promote collaboration between microbial whole genome sequencing (WGS) and antimicrobial resistance (AMR) stakeholders. A key topic discussed was the frequent variability in results obtained between different microbial WGS-related AMR gene prediction workflows. Further, comparative benchmarking studies are difficult to perform due to differences in AMR gene prediction accuracy and a lack of agreement in the naming of AMR genes (semantic conformity) for the results obtained.
View Article and Find Full Text PDFVet Med Sci
January 2025
Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
A major risk to the poultry industry is antimicrobial resistance (AMR), specifically with regard to Mycoplasma gallisepticum (MG) infections. The sensitivity patterns of 100 MG isolates to biocides and antibiotics were examined in this study to clarify the interactions between antimicrobial agents and resistance mechanisms. The antimicrobial activity against MG was assessed using broth microdilution, and the results are shown as the minimum inhibitory concentration (MIC) for each strain, the MIC distribution (range), the MIC, and/or the MIC.
View Article and Find Full Text PDFEpidemiol Infect
January 2025
Health Protection Operations, South West, UK Health Security Agency, Bristol, UK.
In September 2023, the UK Health Security Agency's (UKHSA) South West Health Protection Team received notification of patients with perichondritis. All five cases had attended the same cosmetic piercing studio and a multi-disciplinary outbreak control investigation was subsequently initiated. An additional five cases attending the same studio were found.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
Antimicrobial resistance (AMR) is an increasing problem worldwide, and new treatment options for bacterial infections are direly needed. Engineered probiotics show strong potential in treating or preventing bacterial infections. However, one concern with the use of live bacteria is the risk of the bacteria acquiring genes encoding for AMR or virulence factors through horizontal gene transfer (HGT), and the transformation of the probiotic into a superbug.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!