The increasing interest in the use of natural ingredients has driven keen research and commercial interest in the use of mucilages for a range of applications. Typically, mucilages are polysaccharide hydrocolloids with distinct physicochemical and structural diversity, possessing characteristic functional and health benefits. Apart from their role as binding, thickening, stabilizing, and humidifying agents, they are valued for their antimicrobial, antihypertensive, antioxidant, antiasthmatic, hypoglycemic, and hypolipidemic activities. The focus of this review is to present the range of mucilages that have been explored as encapsulating agents. Encapsulation of food ingredients, nutraceutical, and pharmaceutical ingredients is an attractive technique to enhance the stability of targeted compounds, apart from providing benefits on delivery characteristics. The most widely adopted conventional and emerging extraction and purification methods are explained and supplemented with information on the key criteria involved in characterizing the physicochemical and functional properties of mucilages. The unique traits and benefits of using mucilages as encapsulation agents are detailed with the different methods used by researchers to encapsulate different food and bioactive compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408398.2021.1873730 | DOI Listing |
Front Pharmacol
December 2024
Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China.
Introduction: Although photodynamic therapy (PDT) shows considerable potential for cancer treatment due to its precise spatial control and reduced toxicity, effectively eliminating residual cells under hypoxic conditions remains challenging because of the resistance conferred by these cells.
Methods: Herein, we synthesize an amphiphilic PEGylated polyphosphoester and present a nanocarrier (NP) specifically designed for the codelivery of hydrophobic photosensitizer (chlorin e6, Ce6) and hypoxia-activated prodrugs (tirapazamine, TPZ). We investigate the antitumor effect of NP on both cellular and animal level.
BMC Biotechnol
January 2025
Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt.
Background: Successful treatment of pathogenic bacteria like Enterobacter Cloacae with bacteriophage (phage) counteract some hindrance such as phage stability and immunological clearance. Our research is focused on the encapsulation of phage HK6 within chitosan nanoparticles.
Result: Encapsulation significantly improves stability, efficacy, and delivery of phages.
ACS Omega
December 2024
Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China.
The integration of different therapies to enhance the efficacy and minimize adverse reactions has become popular recently. This approach leverages the complementary mechanisms of action of different treatments, which can lead to better therapeutic outcomes and reduced side effects. Human serum albumin (HSA) exhibits excellent drug loading ability and is often used for biomimetic tumor delivery in multidrug nanocarriers.
View Article and Find Full Text PDFCurr Drug Deliv
January 2025
Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
Objective: DSPE-mPEG2000 is a phospholipid and polyethylene glycol conjugate used in various biomedical applications, including drug delivery, gene transfection, and vaccine delivery. Due to the hydrophilic and hydrophobic properties of DSPE-mPEG2000, it can serve as a drug carrier, encapsulating drugs in liposomes to enhance stability and efficacy.
Method: In this study, long-circulating podophyllotoxin liposomes (Lc-PTOX-Lps) were prepared using DSPE-mPEG2000 as a modifying material and evaluated for their pharmacokinetics and anticancer activity.
Antiinflamm Antiallergy Agents Med Chem
December 2024
Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.
Background: Indomethacin (IND), classified as class 2 in the Biopharmaceutical Classification System (BCS), has emerged as an anti-inflammatory agent with low solubility and high permeability. Widely used in the treatment of various diseases, such as rheumatoid arthritis and ankylosing spondylitis, this drug is well-known for its adverse effects, particularly in the stomach, and a short biological half-life, which is around 1.5-2 hours.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!