The emergence, transference, amplification, and memory of chiroptical activity in supramolecular assemblies, including circularly polarized absorbance and circularly polarized luminescence, remain significant challenges. Herein, an achiral pyridine-substituted coumarin derivative and chiral additives can coassemble into helical nanostructures with fine chiroptical activity via subtle hydrogen-bonding interactions. The resulting supramolecular assemblies remain optically active even after the removal of chiral additives, demonstrating supramolecular chirality can be remembered in the assemblies. More importantly, the removed chiral elements can be reused to achieve continuous circulation and amplification of chirality. This work presents insight into the emergence, transference, amplification, and memory of chirality in a supramolecular assembly system and could be applied to the manufacturing of chiroptical materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.0c03400 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!