Surface engineering is of importance to reduce the reaction barrier of oxygen evolution reaction (OER). Herein, the NiFe Prussian blue analogue (NiFe-PBA)-F catalyst with a multilevel structure was obtained from NiFe-PBAs via a fluorination strategy, which presents an ultralow OER overpotential of 190 mV at 10 mA cm in alkaline solution, with a small Tafel slope of 57 mV dec and excellent stability. Interestingly, surface fluorination engineering could achieve a controllable removal of ligands of the cyan group, contributing to keep the framework structure of NiFe-PBAs. Particularly, NiFe-PBAs-F undergoes a dramatic reconstruction with the dynamic migration of F ions, which creates more active sites of F-doped NiFeOOH and affords more favorable adsorption of oxygen intermediates. Density functional theory calculations suggest that F doping increases the state density of Ni 3d orbital around the Fermi level, thus improving the conductivity of NiFeOOH. Furthermore, based on our experimental results, the lattice oxygen oxidation mechanism for NiFe-PBAs-F was proposed. Our work not only provides a new pathway to realize the controllable pyrolysis of NiFe-PBAs but also gives more insights into the reconstruction and the mechanism for the OER process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c20886DOI Listing

Publication Analysis

Top Keywords

surface fluorination
8
fluorination engineering
8
nife prussian
8
prussian blue
8
blue analogue
8
oxygen evolution
8
evolution reaction
8
structure nife-pbas
8
engineering nife
4
analogue derivatives
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!