A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Amifostine ameliorates cerebral ischaemia-reperfusion injury via p38-mediated oxidative stress and mitochondrial dysfunction. | LitMetric

Amifostine is a cytoprotective compound that is beneficial in ischaemic stroke cases. However, the neuroprotective effect of amifostine on ischaemia/reperfusion (I/R)-induced brain injury and its underlying mechanism are still poorly understood. Herein, we constructed an animal model of middle cerebral artery occlusion and reperfusion (MCAO/R) injury and an in vitro model of oxygen and glucose deprivation and reperfusion (OGD/R) injury. After administration of amifostine, we found significant improvements in neurological deficits, infarct size, and cerebral oedema. Moreover, amifostine alleviated histopathological alteration and increased the number of surviving neurons. Biochemical analysis showed that treatment with amifostine obviously improved the brain damage of MCAO/R mice, as manifested by a decrease in reactive oxygen species (ROS) and malondialdehyde (MDA) generation, and an increase in superoxide dismutase (SOD) activity. Moreover, amifostine decreased the mitochondrial membrane potential (m) loss, and cytochrome c escaping to cytoplasm, but increased the ATP level. In vitro, amifostine also showed an antioxidant effect, which was reflected by the reduced ROS generation, decreased mitochondrial superoxide generation, increased total SOD, SOD1 (Cu/Zn SOD, cytoplasmic SOD), and SOD2 (mitochondrial SOD) activities, and decreased m loss. Furthermore, amifostine suppressed neuronal apoptosis, accompanied by the reduction of Bax, cleaved caspase-9, cleaved caspase-3, and Bcl-2 upregulation. Amifostine also reduced the expression of p-p38 (Thr 180/Tyr 182) in vivo and in vitro. In short, amifostine exhibits a protective effect on cerebral I/R damage through modulating p38-related oxidative stress, mitochondrial dysfunction, and apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.5114/fn.2020.102436DOI Listing

Publication Analysis

Top Keywords

amifostine
11
oxidative stress
8
stress mitochondrial
8
mitochondrial dysfunction
8
decreased mitochondrial
8
m loss
8
mitochondrial
5
sod
5
amifostine ameliorates
4
cerebral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!