Introduction: Fornix deep brain stimulation (fx-DBS) is under investigation for treatment of Alzheimer's disease (AD). We investigated the anatomic correlates of flashback phenomena that were reported previously during acute diencephalic stimulation.
Methods: Thirty-nine patients with mild AD who took part in a prior fx-DBS trial (NCT01608061) were studied. After localizing patients' implanted electrodes and modeling the volume of tissue activated (VTA) by DBS during systematic stimulation testing, we performed (1) voxel-wise VTA mapping to identify flashback-associated zones; (2) machine learning-based prediction of flashback occurrence given VTA overlap with specific structures; (3) normative functional connectomics to define flashback-associated brain-wide networks.
Results: A distinct diencephalic region was associated with greater flashback likelihood. Fornix, bed nucleus of stria terminalis, and anterior commissure involvement predicted memory events with 72% accuracy. Flashback-inducing stimulation exhibited greater functional connectivity to a network of memory-evoking and autobiographical memory-related sites.
Discussion: These results clarify the neuroanatomical substrates of stimulation-evoked flashbacks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8247976 | PMC |
http://dx.doi.org/10.1002/alz.12238 | DOI Listing |
Front Neurosci
January 2025
Department of Evidence-Based Medicine and Social Medicine, School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
Introduction: Sleep deprivation (SD) significantly disrupts the homeostasis of the cardiac-brain axis, yet the neuromodulation effects of deep magnetic stimulation (DMS), a non-invasive and safe method, remain poorly understood.
Methods: Sixty healthy adult males were recruited for a 36-h SD study, they were assigned to the DMS group or the control group according to their individual willing. All individuals underwent heart sound measurements and functional magnetic resonance imaging scans at the experiment's onset and terminal points.
Front Neurosci
January 2025
Department of Mathematics, University of Antwerp-Interuniversity Microelectronics Centre (imec), Antwerp, Belgium.
Introduction: The study of attention has been pivotal in advancing our comprehension of cognition. The goal of this study is to investigate which EEG data representations or features are most closely linked to attention, and to what extent they can handle the cross-subject variability.
Methods: We explore the features obtained from the univariate time series from a single EEG channel, such as time domain features and recurrence plots, as well as representations obtained directly from the multivariate time series, such as global field power or functional brain networks.
Front Cardiovasc Med
January 2025
Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany.
Musicians and researchers are creative professions that share many similarities. They both aim to bring joy and progress to humanity. In recent decades, it has been shown that music has the ability to alleviate pain, improve heart function, reduce anxiety, and stimulate the release of endogenous opioids in the brain.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, TamilNadu India.
Emotion recognition plays a crucial role in brain-computer interfaces (BCI) which helps to identify and classify human emotions as positive, negative, and neutral. Emotion analysis in BCI maintains a substantial perspective in distinct fields such as healthcare, education, gaming, and human-computer interaction. In healthcare, emotion analysis based on electroencephalography (EEG) signals is deployed to provide personalized support for patients with autism or mood disorders.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
Academy of Medical Engineering and Translational Medicine of Tianjin University, Tianjin, 300072 China.
Deep brain stimulation (DBS) is a well-established treatment for both neurological and psychiatric disorders. Directional DBS has the potential to minimize stimulation-induced side effects and maximize clinical benefits. Many new directional leads, stimulation patterns and programming strategies have been developed in recent years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!