trying...
3348016920210401
1521-377360152021Apr06Angewandte Chemie (International ed. in English)Angew Chem Int Ed EnglSurface Modification of Black Phosphorus with Group 13 Lewis Acids for Ambient Protection and Electronic Tuning.832983368329-833610.1002/anie.202100308Herein we introduce a facile, solution-phase protocol to modify the Lewis basic surface of few-layer black phosphorus (bP) and demonstrate its effectiveness at providing ambient stability and tuning of electronic properties. Commercially available group 13 Lewis acids that range in electrophilicity, steric bulk, and Pearson hard/soft-ness are evaluated. The nature of the interaction between the Lewis acids and the bP lattice is investigated using a range of microscopic (optical, atomic force, scanning electron) and spectroscopic (energy dispersive, X-ray photoelectron) methods. Al and Ga halides are most effective at preventing ambient degradation of bP (>84 h for AlBr3 ), and the resulting field-effect transistors show excellent IV characteristics, photocurrent, and current stability, and are significantly p-doped. This protocol, chemically matched to bP and compatible with device fabrication, opens a path for deterministic and persistent tuning of the electronic properties in bP.© 2021 Wiley-VCH GmbH.TofanDanielD0000-0001-5335-1558Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA.SakazakiYukakoYDepartment of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA.Walz MitraKendahl LKL0000-0002-1250-8819Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA.PengRuomingRDepartment of Electrical and Computer Engineering, Department of Physics, University of Washington, Paul Allen Center, 185 E Stevens Way NE, Seattle, WA, 98195, USA.LeeSeokhyeongSDepartment of Electrical and Computer Engineering, Department of Physics, University of Washington, Paul Allen Center, 185 E Stevens Way NE, Seattle, WA, 98195, USA.LiMoM0000-0002-5500-0900Department of Electrical and Computer Engineering, Department of Physics, University of Washington, Paul Allen Center, 185 E Stevens Way NE, Seattle, WA, 98195, USA.VelianAlexandraA0000-0002-6782-7139Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA.eng1719797 AM005 MRSEC SeedDivision of Materials ResearchJournal Article20210305
GermanyAngew Chem Int Ed Engl03705431433-7851IMLewis acidsblack phosphorusdopingfield-effect transistorssurface chemistry
2021172021123602021123612021122632ppublish3348016910.1002/anie.202100308R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, M. Li, Nano Lett. 2017, 17, 6315-6320.H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P. D. Ye, ACS Nano 2014, 8, 4033-4041.L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang, Nat. Nanotechnol. 2014, 9, 372-377.N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, J. Zhang, J. Am. Chem. Soc. 2016, 138, 300-305.N. Izquierdo, J. C. Myers, N. C. A. Seaton, S. K. Pandey, S. A. Campbell, ACS Nano 2019, 13, 7091-7099.K. L. Utt, P. Rivero, M. Mehboudi, E. O. Harriss, M. F. Borunda, A. A. Pacheco SanJuan, S. Barraza-Lopez, ACS Cent. Sci. 2015, 1, 320-327.K. L. Kuntz, R. A. Wells, J. Hu, T. Yang, B. Dong, H. Guo, A. H. Woomer, D. L. Druffel, A. Alabanza, D. Tománek, S. C. Warren, ACS Appl. Mater. Interfaces 2017, 9, 9126-9135.M. van Druenen, F. Davitt, T. Collins, C. Glynn, C. O'Dwyer, J. D. Holmes, G. Collins, Langmuir 2019, 35, 2172-2178.S. Wild, V. Lloret, V. Vega-Mayoral, D. Vella, E. Nuin, M. Siebert, M. Koleśnik-Gray, M. Löffler, K. J. J. Mayrhofer, C. Gadermaier, V. Krstić, F. Hauke, G. Abellán, A. Hirsch, RSC Adv. 2019, 9, 3570-3576.J. Pei, X. Gai, J. Yang, X. Wang, Z. Yu, D.-Y. Choi, B. Luther-Davies, Y. Lu, Nat. Commun. 2016, 7, 10450.J.-S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, D. Akinwande, Sci. Rep. 2015, 5, 8989.Y. Abate, D. Akinwande, S. Gamage, H. Wang, M. Snure, N. Poudel, S. B. Cronin, Adv. Mater. 2018, 30, 1704749.J. D. Wood, S. A. Wells, D. Jariwala, K.-S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, M. C. Hersam, Nano Lett. 2014, 14, 6964-6970.R. A. Doganov, E. C. T. O'Farrell, S. P. Koenig, Y. Yeo, A. Ziletti, A. Carvalho, D. K. Campbell, D. F. Coker, K. Watanabe, T. Taniguchi, A. H. C. Neto, B. Özyilmaz, Nat. Commun. 2015, 6, 6647.G. Abellán, V. Lloret, U. Mundloch, M. Marcia, C. Neiss, A. Görling, M. Varela, F. Hauke, A. Hirsch, Angew. Chem. Int. Ed. 2016, 55, 14557-14562;Angew. Chem. 2016, 128, 14777-14782.Y. Zhao, H. Wang, H. Huang, Q. Xiao, Y. Xu, Z. Guo, H. Xie, J. Shao, Z. Sun, W. Han, X.-F. Yu, P. Li, P. K. Chu, Angew. Chem. Int. Ed. 2016, 55, 5003-5007;Angew. Chem. 2016, 128, 5087-5091.G. Abellán, S. Wild, V. Lloret, N. Scheuschner, R. Gillen, U. Mundloch, J. Maultzsch, M. Varela, F. Hauke, A. Hirsch, J. Am. Chem. Soc. 2017, 139, 10432-10440.R. Gusmão, Z. Sofer, M. Pumera, ACS Nano 2018, 12, 5666-5673.M. Bolognesi, S. Moschetto, M. Trapani, F. Prescimone, C. Ferroni, G. Manca, A. Ienco, S. Borsacchi, M. Caporali, M. Muccini, M. Peruzzini, M. Serrano-Ruiz, L. Calucci, M. A. Castriciano, S. Toffanin, ACS Appl. Mater. Interfaces 2019, 11, 22637-22647.M. Bolognesi, M. Brucale, A. Lorenzoni, F. Prescimone, S. Moschetto, V. V. Korolkov, M. Baldoni, M. Serrano-Ruiz, M. Caporali, F. Mercuri, E. Besley, M. Muccini, M. Peruzzini, P. H. Beton, S. Toffanin, Nanoscale 2019, 11, 17252-17261.M. Peruzzini, R. Bini, M. Bolognesi, M. Caporali, M. Ceppatelli, F. Cicogna, S. Coiai, S. Heun, A. Ienco, I. I. Benito, A. Kumar, G. Manca, E. Passaglia, D. Scelta, M. Serrano-Ruiz, F. Telesio, S. Toffanin, M. Vanni, Eur. J. Inorg. Chem. 2019, 1476-1494.C. R. Ryder, J. D. Wood, S. A. Wells, Y. Yang, D. Jariwala, T. J. Marks, G. C. Schatz, M. C. Hersam, Nat. Chem. 2016, 8, 597-602.Z. Sofer, J. Luxa, D. Bouša, D. Sedmidubský, P. Lazar, T. Hartman, H. Hardtdegen, M. Pumera, Angew. Chem. Int. Ed. 2017, 56, 9891-9896;Angew. Chem. 2017, 129, 10023-10028.M. van Druenen, F. Davitt, T. Collins, C. Glynn, C. O'Dwyer, J. D. Holmes, G. Collins, Chem. Mater. 2018, 30, 4667-4674.Y. Liu, P. Gao, T. Zhang, X. Zhu, M. Zhang, M. Chen, P. Du, G. Wang, H. Ji, J. Yang, S. Yang, Angew. Chem. Int. Ed. 2019, 58, 1479-1483;Angew. Chem. 2019, 131, 1493-1497.K. Walz Mitra, C. H. Chang, M. P. Hanrahan, J. Yang, D. Tofan, W. M. Holden, N. Govind, G. Seidler, A. J. Rossini, A. Velian, Angew. Chem. Int. Ed. 2021, https://doi.org/10.1002/anie.202016033;Angew. Chem. 2021, https://doi.org/10.1002/ange.202016033.A. Ienco, G. Manca, M. Peruzzini, C. Mealli, Dalton Trans. 2018, 47, 17243-17256.J. Su, T. Mou, J. Wen, B. Wang, Appl. Surf. Sci. 2020, 518, 146210.Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, X.-F. Yu, Adv. Mater. 2017, 29, 1703811.A. H. Woomer, T. W. Farnsworth, J. Hu, R. A. Wells, C. L. Donley, S. C. Warren, ACS Nano 2015, 9, 8869-8884.A. Staubitz, A. P. M. Robertson, M. E. Sloan, I. Manners, Chem. Rev. 2010, 110, 4023-4078.W. H. N. Vriezen, F. Jellinek, Recl. Trav. Chim. Pays-Bas 1970, 89, 1306-1312.E. I. Davydova, T. N. Sevastianova, A. Y. Timoshkin, Coord. Chem. Rev. 2015, 297-298, 91-126.R. G. Pearson, J. Am. Chem. Soc. 1963, 85, 3533-3539.H. Chen, W. Fei, J. Zhou, C. Miao, W. Guo, Small 2017, 13, 1602336.T. A. Egerton, N. J. Everall, I. R. Tooley, Langmuir 2005, 21, 3172-3178.Y. K. Ryu, A. Castellanos-Gomez, R. Frisenda in Fundamentals and Applications of Phosphorus Nanomaterials (Ed.: H.-F. Ji), American Chemical Society, Washington, 2019, pp. 47-59.J. M. Hogg, L. C. Brown, K. Matuszek, P. Latos, A. Chrobok, M. Swadźba-Kwaśny, Dalton Trans. 2017, 46, 11561-11574.P. Vishnoi, U. Gupta, R. Pandey, C. N. R. Rao, J. Mater. Chem. A 2019, 7, 6631-6637.C. A. Tolman, Chem. Rev. 1977, 77, 313-348.A. J. V. Marwitz, J. L. Dutton, L. G. Mercier, W. E. Piers, J. Am. Chem. Soc. 2011, 133, 10026-10029.A. El-Hellani, J. Monot, S. Tang, R. Guillot, C. Bour, V. Gandon, Inorg. Chem. 2013, 52, 11493-11502.G. Ménard, D. W. Stephan, J. Am. Chem. Soc. 2010, 132, 1796-1797.T. Yang, B. Dong, J. Wang, Z. Zhang, J. Guan, K. Kuntz, S. C. Warren, D. Tománek, Phys. Rev. B 2015, 92, 125412.J. L. Bourque, M. C. Biesinger, K. M. Baines, Dalton Trans. 2016, 45, 7678-7696.R. Binions, C. J. Carmalt, I. P. Parkin, K. F. E. Pratt, G. A. Shaw, Chem. Mater. 2004, 16, 2489-2493.N. Yadava, R. K. Chauhan, ECS J. Solid State Sci. Technol. 2019, 8, Q3058-Q3063.C. Powell, 1989, https://doi.org/10.18434/T4T88K.M. Broas, O. Kanninen, V. Vuorinen, M. Tilli, M. Paulasto-Kröckel, ACS Omega 2017, 2, 3390-3398.T. Tsujide, S. Nakanuma, Y. Ikushima, J. Electrochem. Soc. 1970, 117, 703.A. I. Aria, K. Nakanishi, L. Xiao, P. Braeuninger-Weimer, A. A. Sagade, J. A. Alexander-Webber, S. Hofmann, ACS Appl. Mater. Interfaces 2016, 8, 30564-30575.R. Galceran, E. Gaufres, A. Loiseau, M. Piquemal-Banci, F. Godel, A. Vecchiola, O. Bezencenet, M.-B. Martin, B. Servet, F. Petroff, B. Dlubak, P. Seneor, Appl. Phys. Lett. 2017, 111, 243101.X. Luo, Y. Rahbarihagh, J. C. M. Hwang, H. Liu, Y. Du, P. D. Ye, IEEE Electron Device Lett. 2014, 35, 1314-1316.C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S.-H. Oh, M. Li, Nano Lett. 2017, 17, 985-991.N. Youngblood, C. Chen, S. J. Koester, M. Li, Nat. Photonics 2015, 9, 247-252.T. Hong, B. Chamlagain, W. Lin, H.-J. Chuang, M. Pan, Z. Zhou, Y.-Q. Xu, Nanoscale 2014, 6, 8978-8983.T. Low, M. Engel, M. Steiner, P. Avouris, Phys. Rev. B 2014, 90, 081408.S. Gamage, Z. Li, V. S. Yakovlev, C. Lewis, H. Wang, S. B. Cronin, Y. Abate, Adv. Mater. Interfaces 2016, 3, 1600121.
trying2...
trying...
7118501MCID_676f0865c5b23875e7097ebd 39719981 39719037 39717751 39691215 39684664 lewis acids "lewis acids"[MeSH Terms] OR ("lewis"[All Fields] AND "acids"[All Fields]) OR "lewis acids"[All Fields] "lewis acids"[MeSH Terms] OR ("lewis"[All Fields] AND "acids"[All Fields]) OR "lewis acids"[All Fields] trying2...
trying...
3971998120241225
2162-25313612025Mar11Molecular therapy. Nucleic acidsMol Ther Nucleic AcidsHealing the heart, one variant at a time.10240710240710240710.1016/j.omtn.2024.102407MohsinSadiaSAging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.YangXiaofengXLemole Cener for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.WangHongHCenter for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.KhanMohsinMCenter for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.engNews20241207
United StatesMol Ther Nucleic Acids1015816212162-2531The authors declare no competing interests.
2024122562120241225620202412254142024127epublish39719981PMC1166769510.1016/j.omtn.2024.102407S2162-2531(24)00294-4Khan M., Nickoloff E., Abramova T., Johnson J., Verma S.K., Krishnamurthy P., Mackie A.R., Vaughan E., Garikipati V.N.S., Benedict C., et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ. Res. 2015;117:52–64.PMC448213025904597Marban E. Deconstructing Regenerative Medicine: From Mechanistic Studies of Cell Therapy to Novel Bioinspired RNA Drugs. Circ. Res. 2024;135:877–885.PMC1146955439325847Mattick J.S., Amaral P.P., Carninci P., Carpenter S., Chang H.Y., Chen L.L., Chen R., Dean C., Dinger M.E., Fitzgerald K.A., et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 2023;24:430–447.PMC1021315236596869Anderson K.M., Anderson D.M. LncRNAs at the heart of development and disease. Mamm. Genome. 2022;33:354–365.35048139Rigaud V.O.C., Hoy R.C., Kurian J., Zarka C., Behanan M., Brosious I., Pennise J., Patel T., Wang T., Johnson J., et al. RNA-Binding Protein LIN28a Regulates New Myocyte Formation in the Heart Through Long Noncoding RNA-H19. Circulation. 2023;147:324–337.PMC987094536314132Busscher D., Boon R.A., Juni R.P. The multifaceted actions of the lncRNA H19 in cardiovascular biology and diseases. Clin. Sci. 2022;136:1157–1178.PMC936686235946958Vilaca A., Jesus C., Lino M., Hayman D., Emanueli C., Terracciano C.M., Fernandes H., de Windt L.J., Ferreira L. Extracellular vesicle transfer of lncRNA H19 splice variants to cardiac cells. Mol. Ther. Nucleic Acids. 2024;35:102233.PMC1122583638974998Herrmann I.K., Wood M.J.A., Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 2021;16:748–759.34211166Wang T., Huang W., Gao X., Deng Y., Huang J. Single extracellular vesicle research: From cell population to a single cell. Biochem. Biophys. Res. Commun. 2024;73439083971Wan Z., Liu T., Xu N., Zhu W., Zhang X., Liu Q., Wang H., Wang H. PKH Dyes Should Be Avoided in the EVs Biodistribution Study of the Brain: A Call for Caution. Int. J. Nanomedicine. 2024;19:10885–10898.PMC1152392739479172
3971903720241224
1521-37732024Dec24Angewandte Chemie (International ed. in English)Angew Chem Int Ed EnglSolvent-Free Chemical Recycling of Polyesters and Polycarbonates by Magnesium-based Lewis Acid Catalyst.e202420688e20242068810.1002/anie.202420688Developing a simple and efficient catalyst system for closed-loop recycling of polymers to monomers is an essentially important but challenging task for the recycle of polymer wastes and preventing the downcycle of plastic products. Herein, we employ inexpensive, commercially available Lewis acids (LAs) to achieve closed-loop recycling in bulk through the catalytic depolymerization of aliphatic polyesters and polycarbonates. The scope of LAs is screened by thermogravimetric analysis experiments and distillation experiments. MgCl2 shows the best catalytic performance that can efficiently depolymerize eleven aliphatic polyesters and polycarbonates (i.e. poly(ε-caprolactone) and poly(trimethylene carbonate)), into monomers (up to 98% yield) at temperatures significantly lower than the ceiling temperature. Moreover, this catalyst system exhibits high selectivity and compatibility towards the depolymerization of (co)polyesters as well as the blends of polyesters and polycarbonates in the presence of other commodity plastics, as well as excellent recycle and reuse catalyst performance. Mechanistic studies indicate that the closed-loop recycling of monomers is achieved through the random chain scission and terminal group cyclization.© 2024 Wiley‐VCH GmbH.ZhaoWuchaoWJilin University College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun, Jilin, 130012 (China), 2699 Qianjin street, 130012, Changchun, CHINA.GuoZongpengZJilin University College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun, Jilin, 130012 (China), 2699 Qianjin street, 130012, Changchun, CHINA.HeJianghuaJJilin University College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun, Jilin, 130012 (China), 2699 Qianjin street, 130012, Changchun, CHINA.ZhangYuetaoYJilin University College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, 2699 Qianjin Street, 130012, Changchun, CHINA.engJournal Article20241224
GermanyAngew Chem Int Ed Engl03705431433-7851IMClosed-LoopDepolymerizationPolycarbonateschemical recyclingpolyesters
20241222024102420241223202412241820202412241820202412241452aheadofprint3971903710.1002/anie.202420688
3971775120241224
2234-943X142024Frontiers in oncologyFront OncolEarly in vitro results indicate that de-O-acetylated sialic acids increase Selectin binding in cancers.14433031443303144330310.3389/fonc.2024.1443303Cancers utilize a simple glycan, Sialic Acid, to engage in metastatic processes via the Sialic acid (Sia) -Selectin pathway. Selectins recognize and bind to sialylated substrates, resulting in adhesion, migration, and extravasation, however, how deviations from the canonical form of Sia regulate binding to Selectin receptors (E, L, and P) on hemopoietic cells resulting in these metastatic processes, remained a gap in knowledge. De-O-acetylated Sias has been recently shown to be an integral substrate to the binding of sialic acid binding proteins. The two proteins responsible for regulating the acetyl functional group on Sia's C6 tail, are Sialic acid acetylesterase (SIAE) and Sialic acid O acetyltransferase (CASD1). To elucidate the contribution of functional group alterations on Sia, 9-O and 7,9-O-acetylation of Sia was modulated via the use of CRISRP-Cas9 gene editing and with Sialyl Glycan Recognition Probes, to produce either O-acetylated-Sia or de-O-acetylated- Sia, respectively. In vitro experiments revealed that increased cell surface expression of de-O-acetylated- Sia resulted in an increase in Selectin binding, enhanced cell proliferation, and increased migration capabilities both in lung and colon cancer. These results delineate for the first time the mechanistic contribution of de-O-acetylated-Sia to Selectin binding, reinforcing the importance of elucidating functional group alterations on Sia and their contribution. Without accurate identification of which functionalized form of Sia is being utilized to bind to sialic acid binding proteins, we cannot accurately produce glycan therapeutics with the correct specificity and reactivity, thus this work contributes an integral component in the development of promising therapeutic avenues, for example in the realm of enzyme antibody drug conjugates.Copyright © 2024 Das, Schulte, Gerhart, Bayoumi, Paulson, Fink, Parrish and Willand-Charnley.DasKakaliKDepartment of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States.SchulteMeganMDepartment of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States.GerhartMeganMDepartment of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States.BayoumiHalaHDepartment of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States.PaulsonDelaynaDDepartment of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States.FinkDarci MDMDepartment of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States.ParrishColinCDepartment of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States.Willand-CharnleyRachelRDepartment of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States.engJournal Article20241209
SwitzerlandFront Oncol1015688672234-943XPSGL-1Sialyl Lewis Xcancerde-O-acetylated sialic acidmetastasismigrationselectinssia-selectin pathwayThe authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
20246320241111202412246212024122462020241224450202411epublish39717751PMC1166394310.3389/fonc.2024.1443303Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. (2015) 15:540–55. doi: 10.1038/nrc398210.1038/nrc398226289314Mann B, Klussmann E, Vandamme-Feldhaus V, Iwersen M, Hanski ML, Riecken EO, et al. . Low O-acetylation of sialyl-Le(x) contributes to its overexpression in colon carcinoma metastases. Int J Cancer. (1997) 72:258–64. doi: 10.1002/(SICI)1097-0215(19970717)72:2<258::AID-IJC10>3.0.CO;2-C10.1002/(SICI)1097-0215(19970717)72:2<258::AID-IJC10>3.0.CO;2-C9219830Borsig L. Selectins in cancer immunity. Glycobiology. (2018) 28:648–55. doi: 10.1093/glycob/cwx10510.1093/glycob/cwx105PMC671175929272415Das K. Elucidating the role of sialic acid in tumorigenic pathways. In: Chemistry, Biochemistry and Physics. Brookings, South Dakota 57007: South Dakota State University; (2024).Sahai E. Illuminating the metastatic process. Nat Rev Cancer. (2007) 7:737–49. doi: 10.1038/nrc222910.1038/nrc222917891189Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog. (2013) 18:43–73. doi: 10.1615/CritRevOncog.v18.i1-2.4010.1615/CritRevOncog.v18.i1-2.40PMC359723523237552Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer. Annu Rev Pathol. (2015) 10:473–510. doi: 10.1146/annurev-pathol-012414-04043810.1146/annurev-pathol-012414-040438PMC439682025621663Bull C, Stoel MA, Brok den MH, Adema GJ. Sialic acids sweeten a tumor’s life. Cancer Res. (2014) 74:3199–204. doi: 10.1158/0008-5472.CAN-14-072810.1158/0008-5472.CAN-14-072824830719Scupakova K, Adelaja OT, Balluff B, Ayyappan V, Tressler CM, Jenkinson NM, et al. . Clinical importance of high-mannose, fucosylated, and complex N-glycans in breast cancer metastasis. JCI Insight. (2021) 6. doi: 10.1172/jci.insight.14694510.1172/jci.insight.146945PMC878367534752419Barkeer S, Chugh S, Batra SK, Ponnusamy MP. Glycosylation of cancer stem cells: function in stemness, tumorigenesis, and metastasis. Neoplasia. (2018) 20:813–25. doi: 10.1016/j.neo.2018.06.00110.1016/j.neo.2018.06.001PMC603788230015157Tvaroska I, Selvaraj C, Koca J. Selectins-the two Dr. Jekyll and Mr. Hyde faces of adhesion molecules-A review. Molecules. (2020) 25. doi: 10.3390/molecules2512283510.3390/molecules25122835PMC735547032575485Grabenstein S, Barnard KN, Anim M, Armoo A, Weichert WS, Bertozzi CR, et al. . Deacetylated sialic acids modulates immune mediated cytotoxicity via the sialic acid-Siglec pathway. Glycobiology. (2021) 31:1279–94. doi: 10.1093/glycob/cwab06810.1093/glycob/cwab06834192335Tuffour I, Amuzu S, Bayoumi H, Surtaj I, Parrish C, Willand-Charnley R. Early in vitro evidence indicates that deacetylated sialic acids modulate multi-drug resistance in colon and lung cancers via breast cancer resistance protein. Front Oncol. (2023) 13:1145333. doi: 10.3389/fonc.2023.114533310.3389/fonc.2023.1145333PMC1029118737377914Tuffour I. Modulatory effects of deacetylated sialic acids on breast cancer resistance protein-mediated multidrug resistance and receptor tyrosine kinase-targeted therapy. In: Chemistry, Biochemistry, and Physics. Brookings, South Dakota: South Dakota State Univeersity; (2023).Wilson DF, Massey W. Scanning electron microscopy of incinerated teeth. Am J Forensic Med Pathol. (1987) 8:32–8. doi: 10.1097/00000433-198703000-0000810.1097/00000433-198703000-000083578204Lise M, Belluco C, Perera SP, Patel R, Thomas P, Ganguly A. Clinical correlations of alpha2,6-sialyltransferase expression in colorectal cancer patients. Hybridoma. (2000) 19:281–6. doi: 10.1089/02724570042982810.1089/02724570042982811001400Sata T, Roth J, Zuber C, Stamm B, Heitz P. Expression of alpha 2,6-linked sialic acid residues in neoplastic but not in normal human colonic mucosa. A lectin-gold cytochemical study with Sambucus nigra and Maackia amurensis lectins. Am J Pathol. (1991) 139:1435–48.PMC18864521661075van Kooyk Y, Rabinovich GA. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol. (2008) 9:593–601. doi: 10.1038/ni.f.20310.1038/ni.f.20318490910Visser EA, Moons SJ, Timmermans SBPE, de Jong H, Boltje TJ, Büll C. Sialic acid O-acetylation: From biosynthesis to roles in health and disease. J Biol Chem. (2021) 297:100906. doi: 10.1016/j.jbc.2021.10090610.1016/j.jbc.2021.100906PMC831902034157283Amon R, Reuven EM, Leviatan Ben-Arye S, Padler-Karavani V. Glycans in immune recognition and response. Carbohydr Res. (2014) 389:115–22. doi: 10.1016/j.carres.2014.02.00410.1016/j.carres.2014.02.00424680512McEver RP. Selectin-carbohydrate interactions during inflammation and metastasis. Glycoconj J. (1997) 14:585–91. doi: 10.1023/A:101858442587910.1023/A:10185844258799298691Munkley J, Scott E. Targeting aberrant sialylation to treat cancer. Medicines (Basel). (2019) 6. doi: 10.3390/medicines604010210.3390/medicines6040102PMC696394331614918Smith BAH, Bertozzi CR. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat Rev Drug Discovery. (2021) 20:217–43. doi: 10.1038/s41573-020-00093-110.1038/s41573-020-00093-1PMC781234633462432Mahoney TS, Weyrich AS, Dixon DA, McIntyre T, Prescott SM, Zimmerman GA. Cell adhesion regulates gene expression at translational checkpoints in human myeloid leukocytes. Proc Natl Acad Sci U.S.A. (2001) 98:10284–9. doi: 10.1073/pnas.18120139810.1073/pnas.181201398PMC5695311517314Natoni A, Macauley MS, O’Dwyer ME. Targeting selectins and their ligands in cancer. Front Oncol. (2016) 6:93. doi: 10.3389/fonc.2016.0009310.3389/fonc.2016.00093PMC483441927148485McEver RP. Selectins: lectins that initiate cell adhesion under flow. Curr Opin Cell Biol. (2002) 14:581–6. doi: 10.1016/S0955-0674(02)00367-810.1016/S0955-0674(02)00367-812231353Ley K. The role of selectins in inflammation and disease. Trends Mol Med. (2003) 9:263–8. doi: 10.1016/S1471-4914(03)00071-610.1016/S1471-4914(03)00071-612829015Pearce OM, Laubli H. Sialic acids in cancer biology and immunity. Glycobiology. (2016) 26:111–28. doi: 10.1093/glycob/cwv09710.1093/glycob/cwv09726518624Kansas GS. Selectins and their ligands: current concepts and controversies. Blood. (1996) 88:3259–87. doi: 10.1182/blood.V88.9.3259.bloodjournal889325910.1182/blood.V88.9.3259.bloodjournal88932598896391Borsig L, Vlodavsky I, Ishai-Michaeli R, Torri G, Vismara E. Sulfated hexasaccharides attenuate metastasis by inhibition of P-selectin and heparanase. Neoplasia. (2011) 13:445–52. doi: 10.1593/neo.10173410.1593/neo.101734PMC308462121532885Zak I, Lewandowska E, Gnyp W. Selectin glycoprotein ligands. Acta Biochim Pol. (2000) 47:393–412. doi: 10.18388/abp.2000_401910.18388/abp.2000_401911051204Zhao S, Wang Z. Changes in heparan sulfate sulfotransferases and cell-surface heparan sulfate during SKM-1 cells granulocytic differentiation and A549 cells epithelial-mesenchymal transition. Glycoconj J. (2020) 37:151–64. doi: 10.1007/s10719-019-09903-010.1007/s10719-019-09903-031863309McEver RP. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc Res. (2015) 107:331–9. doi: 10.1093/cvr/cvv15410.1093/cvr/cvv154PMC459232425994174Esposito M, Mondal N, Greco TM, Wei Y, Spadazzi C, Lin SC, et al. . Bone vascular niche E-selectin induces mesenchymal-epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nat Cell Biol. (2019) 21:627–39. doi: 10.1038/s41556-019-0309-210.1038/s41556-019-0309-2PMC655621030988423Hauselmann I, Roblek M, Protsyuk D, Huck V, Knopfova L, Grässle S, et al. . Monocyte induction of E-selectin-mediated endothelial activation releases VE-cadherin junctions to promote tumor cell extravasation in the metastasis cascade. Cancer Res. (2016) 76:5302–12. doi: 10.1158/0008-5472.CAN-16-078410.1158/0008-5472.CAN-16-0784PMC632265327488527Huang J, Huang J, Zhang G. Insights into the role of sialylation in cancer metastasis, immunity, and therapeutic opportunity. Cancers (Basel). (2022) 14. doi: 10.3390/cancers1423584010.3390/cancers14235840PMC973730036497322Smith BAH, Bertozzi CR. Author Correction: The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat Rev Drug Discovery. (2021) 20:244. doi: 10.1038/s41573-021-00160-110.1038/s41573-021-00160-1PMC809527233558696Kappelmayer J, Nagy B, Jr. The interaction of selectins and PSGL-1 as a key component in thrombus formation and cancer progression. BioMed Res Int. (2017) 2017:6138145. doi: 10.1155/2017/613814510.1155/2017/6138145PMC547882628680883Hoos A, Protsyuk D, Borsig L. Metastatic growth progression caused by PSGL-1-mediated recruitment of monocytes to metastatic sites. Cancer Res. (2014) 74:695–704. doi: 10.1158/0008-5472.CAN-13-094610.1158/0008-5472.CAN-13-094624322980ChaChadi VB, Bhat G, Cheng PW. Glycosyltransferases involved in the synthesis of MUC-associated metastasis-promoting selectin ligands. Glycobiology. (2015) 25:963–75. doi: 10.1093/glycob/cwv03010.1093/glycob/cwv030PMC451868425972125St Hill CA, Baharo-Hassan D, Farooqui M. C2-O-sLeX glycoproteins are E-selectin ligands that regulate invasion of human colon and hepatic carcinoma cells. PloS One. (2011) 6:e16281. doi: 10.1371/journal.pone.001628110.1371/journal.pone.0016281PMC302380721283832Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. (2020) 5:28. doi: 10.1038/s41392-020-0134-x10.1038/s41392-020-0134-xPMC706780932296047Lange T, Valentiner U, Wicklein D, Maar H, Labitzky V, Ahlers AK, et al. . Tumor cell E-selectin ligands determine partialefficacy of bortezomib on spontaneous lung metastasis formation of solid human tumors in vivo. Mol Ther. (2022) 30:1536–52. doi: 10.1016/j.ymthe.2022.01.01710.1016/j.ymthe.2022.01.017PMC907731535031433Steeber DA, Campbell MA, Basit A, Ley K, Tedder TF. Optimal selectin-mediated rolling of leukocytes during inflammation in vivo requires intercellular adhesion molecule-1 expression. Proc Natl Acad Sci U.S.A. (1998) 95:7562–7. doi: 10.1073/pnas.95.13.756210.1073/pnas.95.13.7562PMC226839636189Norman KE, Moore KL, McEver RP, Ley K. Leukocyte rolling in vivo is mediated by P-selectin glycoprotein ligand-1. Blood. (1995) 86:4417–21. doi: 10.1182/blood.V86.12.4417.bloodjournal8612441710.1182/blood.V86.12.4417.bloodjournal861244178541529Gassmann P, Enns A, Haier J. Role of tumor cell adhesion and migration in organ-specific metastasis formation. Onkologie. (2004) 27:577–82. doi: 10.1159/00008134310.1159/00008134315591720Gout S, Tremblay PL, Huot J. Selectins and selectin ligands in extravasation of cancer cells and organ selectivity of metastasis. Clin Exp Metastasis. (2008) 25:335–44. doi: 10.1007/s10585-007-9096-410.1007/s10585-007-9096-417891461Sun H, Zhou Y, Jiang H, Xu. Elucidation of functional roles of sialic acids in cancer migration. Front Oncol. (2020) 10:401. doi: 10.3389/fonc.2020.0040110.3389/fonc.2020.00401PMC713799532296639Lundblad A. Gunnar Blix and his discovery of sialic acids. Fascinating molecules in glycobiology. Ups J Med Sci. (2015) 120:104–12. doi: 10.3109/03009734.2015.102742910.3109/03009734.2015.1027429PMC446348325921326Tyagi W, Pandey V, Pokharel YR. Membrane linked RNA glycosylation as new trend to envision epi-transcriptome epoch. Cancer Gene Ther. (2023) 30:641–6. doi: 10.1038/s41417-022-00430-z10.1038/s41417-022-00430-z35136215Schauer R. Chapter One - Exploration of the Sialic Acid World, in Advances in Carbohydrate Chemistry and Biochemistry. Baker DC, editor. Academic Press; (2018) p. 1–213. 2009: Cold Spring Harbor Press.PMC711206130509400Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. . Essentials of glycobiology. 4th edition. (2009).Janbon G, Himmelreich U, Moyrand F, Improvisi L, Dromer F. Cas1p is a membrane protein necessary for the O-acetylation of the Cryptococcus neoformans capsular polysaccharide. Mol Microbiol. (2001) 42:453–67. doi: 10.1046/j.1365-2958.2001.02651.x10.1046/j.1365-2958.2001.02651.x11703667Takematsu H, Diaz S, Stoddart A, Zhang Y, Varki A. Lysosomal and cytosolic sialic acid 9-O-acetylesterase activities can Be encoded by one gene via differential usage of a signal peptide-encoding exon at the N terminus. J Biol Chem. (1999) 274:25623–31. doi: 10.1074/jbc.274.36.2562310.1074/jbc.274.36.2562310464298Gomes C, et al. . Expression of ST3GAL4 leads to SLe(x) expression and induces c-Met activation and an invasive phenotype in gastric carcinoma cells. PloS One. (2013) 8:e66737. doi: 10.1371/journal.pone.006673710.1371/journal.pone.0066737PMC368297823799130Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat Rev Nephrol. (2019) 15:346–66. doi: 10.1038/s41581-019-0129-410.1038/s41581-019-0129-4PMC659070930858582Pereira JL, Cavaco P, da Silva RC, Pacheco-Leyva I, Mereiter S, Pinto R, et al. . P-selectin glycoprotein ligand 1 promotes T cell lymphoma development and dissemination. Transl Oncol. (2021) 14:101125. doi: 10.1016/j.tranon.2021.10112510.1016/j.tranon.2021.101125PMC818856534090013Dimitroff CJ, Descheny L, Trujillo N, Kim R, Nguyen V, Huang W, et al. . Identification of leukocyte E-selectin ligands, P-selectin glycoprotein ligand-1 and E-selectin ligand-1, on human metastatic prostate tumor cells. Cancer Res. (2005) 65:5750–60. doi: 10.1158/0008-5472.CAN-04-465310.1158/0008-5472.CAN-04-4653PMC147266115994950Kauffman K, Manfra D, Nowakowska D, Zafari M, Nguyen PA, Phennicie R, et al. . PSGL-1 blockade induces classical activation of human tumor-associated macrophages. Cancer Res Commun. (2023) 3:2182–94. doi: 10.1158/2767-9764.CRC-22-051310.1158/2767-9764.CRC-22-0513PMC1060181737819238Izumi Y, Kawamura YJ, Irimura T. Carbohydrate antigens in carcinoma invasion and metastasis. Nihon Geka Gakkai Zasshi. (1996) 97:140–4.8632742Okamura N, Mori Y, Endo T, Ito E, Kudo R. Experimental studies on the cell adhesion molecule E-cadherin and in vitro invasion of endometrial carcinoma cell lines. Nihon Sanka Fujinka Gakkai Zasshi. (1996) 48:335–42.8847459Yeini E, Ofek P, Pozzi S, Albeck N, Ben-Shushan D, Tiram G, et al. . P-selectin axis plays a key role in microglia immunophenotype and glioblastoma progression. Nat Commun. (2021) 12:1912. doi: 10.1038/s41467-021-22186-010.1038/s41467-021-22186-0PMC799796333771989Trinchera M, Aronica A, Dall’Olio F. Selectin ligands sialyl-lewis a and sialyl-lewis x in gastrointestinal cancers. Biol (Basel). (2017) 6. doi: 10.3390/biology601001610.3390/biology6010016PMC537200928241499Chen SH, Dallas MR, Balzer EM, Konstantopoulos. Mucin 16 is a functional selectin ligand on pancreatic cancer cells. FASEB J. (2012) 26:1349–59. doi: 10.1096/fj.11-19566910.1096/fj.11-195669PMC328950822159147Sakuma K, Aoki M, Kannagi R. Transcription factors c-Myc and CDX2 mediate E-selectin ligand expression in colon cancer cells undergoing EGF/bFGF-induced epithelial-mesenchymal transition. Proc Natl Acad Sci U.S.A. (2012) 109:7776–81. doi: 10.1073/pnas.111113510910.1073/pnas.1111135109PMC335667822547830Flate E, Stalvey JR. Motility of select ovarian cancer cell lines: effect of extra-cellular matrix proteins and the involvement of PAK2. Int J Oncol. (2014) 45:1401–11. doi: 10.3892/ijo.2014.255310.3892/ijo.2014.2553PMC415180425050916Guo X, Hutcheon AE, Zieske JD. TAT-mediated protein transduction into human corneal epithelial cells: p15(INK4b) inhibits cell proliferation and stimulates cell migration. Invest Ophthalmol Vis Sci. (2004) 45:1804–11. doi: 10.1167/iovs.03-116410.1167/iovs.03-116415161843Sharma GD, He J, Bazan HE. p38 and ERK1/2 coordinate cellular migration and proliferation in epithelial wound healing: evidence of cross-talk activation between MAP kinase cascades. J Biol Chem. (2003) 278:21989–97. doi: 10.1074/jbc.M30265020010.1074/jbc.M30265020012663671Zagon IS, Sassani JW, McLaughlin PJ. Cellular dynamics of corneal wound re-epithelialization in the rat. II. DNA synthesis of the ocular surface epithelium following wounding. Brain Res. (1999) 839:243–52. doi: 10.1016/S0006-8993(99)01722-910.1016/S0006-8993(99)01722-910519047Chung EH, Hutcheon AE, Joyce NC, Zieske JD. Synchronization of the G1/S transition in response to corneal debridement. Invest Ophthalmol Vis Sci. (1999) 40:1952–8.10440248
3969121520241218
1860-5397202024Beilstein journal of organic chemistryBeilstein J Org ChemNon-covalent organocatalyzed enantioselective cyclization reactions of α,β-unsaturated imines.322132553221-325510.3762/bjoc.20.268Asymmetric cycloaddition is a straightforward strategy which enables the synthesis of structurally distinct cyclic derivatives which are difficult to access by other methodologies, using an efficient and atom-economical path from simple precursors. In recent years several asymmetric catalytic cyclization strategies have been accomplished for the construction of N-heterocycles using various catalytic systems such as chiral metal catalysts, chiral Lewis acids or chiral organocatalysts. This review presents an overview of the recent advances in enantioselective cyclization reactions of 1-azadienes catalyzed by non-covalent organocatalysts.Copyright © 2024, Torres-Oya and Zurro.Torres-OyaSergioS0000-0002-1003-519XDepartamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (IRYCIS), 28805 Madrid, Spain.https://ror.org/04pmn0e78https://www.isni.org/isni/0000000419370239ZurroMercedesM0000-0003-1222-7926Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (IRYCIS), 28805 Madrid, Spain.https://ror.org/04pmn0e78https://www.isni.org/isni/0000000419370239engJournal ArticleReview20241210
GermanyBeilstein J Org Chem1012507461860-5397N-heterocyclesasymmetric organocatalysiscyclizationinverse electron demand aza-Diels–Alder reactionα,β-unsaturated imines
2024810202411222024121811342024121811332024121841620241210epublish39691215PMC1165056810.3762/bjoc.20.268Alvarez‐Builla J, Vaquero J J, Barluenga J, editors. Modern Heterocyclic Chemistry. Weinheim, Germany: Wiley-VCH; 2011.10.1002/9783527637737Joule J A, Mills K, Smith G F. Heterocyclic Chemistry. London, UK: CRC Press; 2020.10.1201/9781003072850Shimizu M, Hachiya I, Mizota I. Chem Commun. 2009:874–889. doi: 10.1039/b814930e.10.1039/b814930e19214305Zhao C, Gao R, Ma W, Li M, Li Y, Zhang Q, Guan W, Fu J. Nat Commun. 2024;15:4329. doi: 10.1038/s41467-024-48737-9.10.1038/s41467-024-48737-9PMC1110933838773128Gothelf K V, Jørgensen K A. Chem Rev. 1998;98:863–910. doi: 10.1021/cr970324e.10.1021/cr970324e11848917Yet L. Chem Rev. 2000;100:2963–3008. doi: 10.1021/cr990407q.10.1021/cr990407q11749312Pandey G, Banerjee P, Gadre S R. Chem Rev. 2006;106:4484–4517. doi: 10.1021/cr050011g.10.1021/cr050011g17091927Goudedranche S, Raimondi W, Bugaut X, Constantieux T, Bonne D, Rodriguez Jean J. Synthesis. 2013;45:1909–1930. doi: 10.1055/s-0033-1338484.10.1055/s-0033-1338484Held F E, Tsogoeva S B. Catal Sci Technol. 2016;6:645–667. doi: 10.1039/c5cy01894c.10.1039/c5cy01894cHayashi Y. Cycloaddition Reactions in Organic Synthesis. Weinheim, Germany: Wiley-VCH; 2001. Catalytic Asymmetric Diels–Alder Reactions; pp. 5–55.10.1002/3527600256.ch1Kagan H B, Riant O. Chem Rev. 1992;92:1007–1019. doi: 10.1021/cr00013a013.10.1021/cr00013a013Xie M, Lin L, Feng X. Chem Rec. 2017;17:1184–1202. doi: 10.1002/tcr.201700006.10.1002/tcr.20170000628508470Laina‐Martín V, Fernández‐Salas J A, Alemán J. Chem – Eur J. 2021;27(49):12509–12520. doi: 10.1002/chem.202101696.10.1002/chem.202101696PMC845691634132427Skrzyńska A, Frankowski S, Albrecht Ł. Asian J Org Chem. 2020;9(11):1688–1700. doi: 10.1002/ajoc.202000332.10.1002/ajoc.202000332Wheeler S E, Seguin T J, Guan Y, Doney A C. Acc Chem Res. 2016;49:1061–1069. doi: 10.1021/acs.accounts.6b00096.10.1021/acs.accounts.6b0009627110641Saha S K, Bera A, Singh S, Rana N K. Eur J Org Chem. 2023;26:e202201470. doi: 10.1002/ejoc.202201470.10.1002/ejoc.202201470Zurro M, Maestro A. ChemCatChem. 2023;15:e202300500. doi: 10.1002/cctc.202300500.10.1002/cctc.202300500Liao H-H, Miñoza S, Lee S-C, Rueping M. Chem – Eur J. 2022;28:e202201112. doi: 10.1002/chem.202201112.10.1002/chem.20220111235652815Mukherjee S, Yang J W, Hoffmann S, List B. Chem Rev. 2007;107:5471–5569. doi: 10.1021/cr0684016.10.1021/cr068401618072803MacMillan D W C. Nature. 2008;455:304–308. doi: 10.1038/nature07367.10.1038/nature0736718800128Enders D, Niemeier O, Henseler A. Chem Rev. 2007;107:5606–5655. doi: 10.1021/cr068372z.10.1021/cr068372z17956132Doyle A G, Jacobsen E N. Chem Rev. 2007;107:5713–5743. doi: 10.1021/cr068373r.10.1021/cr068373r18072808Erkkilä A, Majander I, Pihko P M. Chem Rev. 2007;107:5416–5470. doi: 10.1021/cr068388p.10.1021/cr068388p18072802Jiang X, Shi X, Wang S, Sun T, Cao Y, Wang R. Angew Chem, Int Ed. 2012;51:2084–2087. doi: 10.1002/anie.201107716.10.1002/anie.20110771622271371Du D, Xu Q, Li X-G, Shi M. Chem – Eur J. 2016;22:4733–4737. doi: 10.1002/chem.201600497.10.1002/chem.20160049726853427Gu Z, Wu B, Jiang G-F, Zhou Y-G. Chin J Chem. 2018;36:1130–1134. doi: 10.1002/cjoc.201800330.10.1002/cjoc.201800330Ren X-R, Lin J-B, Hu X-Q, Xu P-F. Org Chem Front. 2019;6:2280–2283. doi: 10.1039/c9qo00357f.10.1039/c9qo00357fWang C-S, Li T-Z, Cheng Y-C, Zhou J, Mei G-J, Shi F. J Org Chem. 2019;84:3214–3222. doi: 10.1021/acs.joc.8b03004.10.1021/acs.joc.8b0300430777434Li X, Yan J, Qin J, Lin S, Chen W, Zhan R, Huang H. J Org Chem. 2019;84:8035–8045. doi: 10.1021/acs.joc.9b00911.10.1021/acs.joc.9b0091131188599Ni Q, Wang X, Xu F, Chen X, Song X. Chem Commun. 2020;56:3155–3158. doi: 10.1039/d0cc00736f.10.1039/d0cc00736f32064486Frankowski S, Skrzyńska A, Sieroń L, Albrecht Ł. Adv Synth Catal. 2020;362:2658–2665. doi: 10.1002/adsc.202000197.10.1002/adsc.202000197Chang L, Zhu G-Y, Yang T, Zhao X-L, Shi M, Zhao M-X. Org Biomol Chem. 2021;19:3687–3697. doi: 10.1039/d1ob00115a.10.1039/d1ob00115a33908569Laina-Martín V, Humbrías-Martín J, Mas-Ballesté R, Fernández-Salas J A, Alemán J. ACS Catal. 2021;11:12133–12145. doi: 10.1021/acscatal.1c03390.10.1021/acscatal.1c03390PMC849116634621594Yang T, Yan S, Yu Z-J, Zhao X-L, Shi M, Zhao M-X. Eur J Org Chem. 2023;26:e202300275. doi: 10.1002/ejoc.202300275.10.1002/ejoc.202300275Song C E, editor. Cinchona Alkaloids in Synthesis and Catalysis. Weinheim, Germany: Wiley-VCH; 2009.10.1002/9783527628179Li C, Jiang K, Chen Y-C. Molecules. 2015;20:13642–13658. doi: 10.3390/molecules200813642.10.3390/molecules200813642PMC633216726225947Yu L, Cheng Y, Qi F, Li R, Li P. Org Chem Front. 2017;4:1336–1340. doi: 10.1039/c6qo00832a.10.1039/c6qo00832aVarlet T, Masson G. Chem Commun. 2021;57:4089–4105. doi: 10.1039/d1cc00590a.10.1039/d1cc00590a33908458Maji R, Mallojjala S C, Wheeler S E. Chem Soc Rev. 2018;47:1142–1158. doi: 10.1039/c6cs00475j.10.1039/c6cs00475j29355873He L, Laurent G, Retailleau P, Folléas B, Brayer J-L, Masson G. Angew Chem, Int Ed. 2013;52:11088–11091. doi: 10.1002/anie.201304969.10.1002/anie.20130496924038965Jarrige L, Glavač D, Levitre G, Retailleau P, Bernadat G, Neuville L, Masson G. Chem Sci. 2019;10:3765–3769. doi: 10.1039/c8sc05581e.10.1039/c8sc05581ePMC646112431015920He S, Gu H, He Y-P, Yang X. Org Lett. 2020;22:5633–5639. doi: 10.1021/acs.orglett.0c01994.10.1021/acs.orglett.0c0199432603121Mei G-J, Tang X, Tasdan Y, Lu Y. Angew Chem, Int Ed. 2020;59:648–652. doi: 10.1002/anie.201911686.10.1002/anie.20191168631592562Chen K-W, Wang D-D, Liu S-J, Wang X, Zhang Y-C, Tian Y-M, Wu Q, Shi F. J Org Chem. 2021;86:10427–10439. doi: 10.1021/acs.joc.1c01105.10.1021/acs.joc.1c0110534313431Koay W L, Mei G-J, Lu Y. Org Chem Front. 2021;8:968–974. doi: 10.1039/d0qo01236j.10.1039/d0qo01236jMa W-Y, Montinho‐Inacio E, Iorga B I, Retailleau P, Moreau X, Neuville L, Masson G. Adv Synth Catal. 2022;364(10):1708–1715. doi: 10.1002/adsc.202200161.10.1002/adsc.202200161Miao Y-H, Hua Y-Z, Gao H-J, Mo N-N, Wang M-C, Mei G-J. Chem Commun. 2022;58:7515–7518. doi: 10.1039/d2cc02458f.10.1039/d2cc02458f35687078Han T-J, Zhang Z-X, Wang M-C, Xu L-P, Mei G-J. Angew Chem, Int Ed. 2022;61:e202207517. doi: 10.1002/anie.202207517.10.1002/anie.20220751735727301Mo N-N, Miao Y-H, Xiao X, Hua Y-Z, Wang M-C, Huang L, Mei G-J. Chem Commun. 2023;59:5902–5905. doi: 10.1039/d3cc01194a.10.1039/d3cc01194a37097750Zhou W-J, Yu X, Chen C, Lan W, Zhan G, Zhou J, Liu Q, Huang W, Yang Q-Q. J Org Chem. 2023;88:13427–13439. doi: 10.1021/acs.joc.3c00663.10.1021/acs.joc.3c0066337750476
396846642024121720241217
1422-006725232024Dec02International journal of molecular sciencesInt J Mol SciSynthesis of Bis(isodecyl Terephthalate) from Waste Poly(ethylene Terephthalate) Catalyzed by Lewis Acid Catalysts.1295310.3390/ijms252312953Increasing plastic waste generation has become a pressing environmental problem. One of the most produced waste plastics originates from post-consumer packaging, of which PET constitutes a significant portion. Despite increasing recycling rates, its accumulation has created a need for the development of new recycling methods that can further expand the possibilities of recycling. In this paper, we present the application of Lewis acid catalysts for the depolymerization of PET waste. The obtained results show the formation of diisodecyl terephthalate (DIDTP), which is used as a PVC plasticizer. For this purpose, several Lewis acid catalysts were tested, including tin, cobalt, manganese, zirconium, zinc, and calcium derivatives, alongside zinc acetate and potassium hydroxide, which were used as reference catalysts. Our results show that tin (II) oxalate is the most effective catalyst, and it was then used to synthesize two application samples (crude and purified). The physicochemical properties of PVC mixtures with the obtained samples were determined and compared to commercial plasticizers, where both plasticizers had similar plasticizing properties to PVC plasticization.MuszyńskiMarcinMDepartment of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, PhD School, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland.Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland.NowickiJanuszJŁukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland.KrasuskaAgataAŁukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland.Nowakowska-BogdanEwaE0000-0002-9246-4114Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland.BartoszewiczMariaM0000-0002-9366-0520Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland.WoszczyńskiPiotrP0000-0002-3786-5724Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland.ZygadłoMateuszMDepartment of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Chemistry Students Research Society ks. M. Strzody 9, 44-100 Gliwice, Poland.DudekGabrielaG0000-0002-6182-2652Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland.eng04/040/RGJ24/0277Silesian University of Technology32/014/SDU/10-22Silesian University of Technology31/010/SDU20/0006-10Silesian University of TechnologyDWD/5/0567/2021Ministry of Science and Higher Education of PolandBC/23/09Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia"Journal Article20241202
SwitzerlandInt J Mol Sci1010927911422-00670Polyethylene Terephthalates0Lewis Acids0Phthalic Acids0PlasticizersIMCatalysisPolyethylene TerephthalateschemistryLewis AcidschemistryPhthalic AcidschemistryPlasticizerschemistryRecyclingPETalcoholysisrecyclingThe authors declare no conflicts of interest.
20241182024112720241127202412171150202412171149202412171142024122epublish3968466410.3390/ijms252312953ijms252312953PMC11641123Diao J., Hu Y., Tian Y., Carr R., Moon T.S. Upcycling of Poly(Ethylene Terephthalate) to Produce High-Value Bio-Products. Cell Rep. 2023;42:111908. doi: 10.1016/j.celrep.2022.111908.10.1016/j.celrep.2022.11190836640302Browne M.A., Crump P., Niven S.J., Teuten E., Tonkin A., Galloway T., Thompson R. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environ. Sci. Technol. 2011;45:9175–9179. doi: 10.1021/es201811s.10.1021/es201811s21894925Barnes D.K.A., Galgani F., Thompson R.C., Barlaz M. Accumulation and Fragmentation of Plastic Debris in Global Environments. Philos. Trans. R. Soc. B Biol. Sci. 2009;364:1985–1998. doi: 10.1098/rstb.2008.0205.10.1098/rstb.2008.0205PMC287300919528051Smith R., Oliver C., Williams D.F. The Enzymatic Degradation of Polymersin Vitro. J. Biomed. Mater. Res. 1987;21:991–1003. doi: 10.1002/jbm.820210805.10.1002/jbm.8202108052958461Zhang J., Wang X., Gong J., Gu Z. A Study on the Biodegradability of Polyethylene Terephthalate Fiber and Diethylene Glycol Terephthalate. J. Appl. Polym. Sci. 2004;93:1089–1096. doi: 10.1002/app.20556.10.1002/app.20556Muszyński M., Nowicki J., Zygadło M., Dudek G. Comparsion of Catalyst Effectiveness in Different Chemical Depolymerization Methods of Poly(Ethylene Terephthalate) Molecules. 2023;28:6385. doi: 10.3390/molecules28176385.10.3390/molecules28176385PMC1048906337687213Hopewell J., Dvorak R., Kosior E. Plastics Recycling: Challenges and Opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009;364:2115–2126. doi: 10.1098/rstb.2008.0311.10.1098/rstb.2008.0311PMC287302019528059Ragaert K., Delva L., Van Geem K. Mechanical and Chemical Recycling of Solid Plastic Waste. Waste Manag. 2017;69:24–58. doi: 10.1016/j.wasman.2017.07.044.10.1016/j.wasman.2017.07.04428823699de Marco I., Caballero B., Torres A., Laresgoiti M.F., Chomón M.J., Cabrero M.A. Recycling Polymeric Wastes by Means of Pyrolysis. J. Chem. Technol. Biotechnol. 2002;77:817–824. doi: 10.1002/jctb.636.10.1002/jctb.636Lopez-Urionabarrenechea A., de Marco I., Caballero B.M., Laresgoiti M.F., Adrados A. Catalytic Stepwise Pyrolysis of Packaging Plastic Waste. J. Anal. Appl. Pyrolysis. 2012;96:54–62. doi: 10.1016/j.jaap.2012.03.004.10.1016/j.jaap.2012.03.004Ahmadinia E., Zargar M., Karim M.R., Abdelaziz M., Ahmadinia E. Performance Evaluation of Utilization of Waste Polyethylene Terephthalate (PET) in Stone Mastic Asphalt. Constr. Build Mater. 2012;36:984–989. doi: 10.1016/j.conbuildmat.2012.06.015.10.1016/j.conbuildmat.2012.06.015Leng Z., Padhan R.K., Sreeram A. Production of a Sustainable Paving Material through Chemical Recycling of Waste PET into Crumb Rubber Modified Asphalt. J. Clean Prod. 2018;180:682–688. doi: 10.1016/j.jclepro.2018.01.171.10.1016/j.jclepro.2018.01.171Leng Z., Sreeram A., Padhan R.K., Tan Z. Value-Added Application of Waste PET Based Additives in Bituminous Mixtures Containing High Percentage of Reclaimed Asphalt Pavement (RAP) J. Clean Prod. 2018;196:615–625. doi: 10.1016/j.jclepro.2018.06.119.10.1016/j.jclepro.2018.06.119Usman I.U., Kunlin M. Influence of Polyethylene Terephthalate (PET) Utilization on the Engineering Properties of Asphalt Mixtures: A Review. Constr. Build Mater. 2024;411:134439. doi: 10.1016/j.conbuildmat.2023.134439.10.1016/j.conbuildmat.2023.134439Kenny S.T., Runic J.N., Kaminsky W., Woods T., Babu R.P., Keely C.M., Blau W., O’Connor K.E. Up-Cycling of PET (Polyethylene Terephthalate) to the Biodegradable Plastic PHA (Polyhydroxyalkanoate) Environ. Sci. Technol. 2008;42:7696–7701. doi: 10.1021/es801010e.10.1021/es801010e18983095Du S., Valla J.A., Parnas R.S., Bollas G.M. Conversion of Polyethylene Terephthalate Based Waste Carpet to Benzene-Rich Oils through Thermal, Catalytic, and Catalytic Steam Pyrolysis. ACS Sustain. Chem. Eng. 2016;4:2852–2860. doi: 10.1021/acssuschemeng.6b00450.10.1021/acssuschemeng.6b00450Paszun D., Spychaj T. Chemical Recycling of Poly(Ethylene Terephthalate) Ind. Eng. Chem. Res. 1997;36:1373–1383. doi: 10.1021/ie960563c.10.1021/ie960563cKarayannidis G.P., Achilias D.S. Chemical Recycling of Poly(Ethylene Terephthalate) Macromol Mater Eng. 2007;292:128–146. doi: 10.1002/mame.200600341.10.1002/mame.200600341Sinha V., Patel M.R., Patel J.V. Pet Waste Management by Chemical Recycling: A Review. J. Polym. Environ. 2010;18:8–25. doi: 10.1007/s10924-008-0106-7.10.1007/s10924-008-0106-7Shojaei B., Abtahi M., Najafi M. Chemical Recycling of PET: A Stepping-stone toward Sustainability. Polym. Adv. Technol. 2020;31:2912–2938. doi: 10.1002/pat.5023.10.1002/pat.5023Samak N.A., Jia Y., Sharshar M.M., Mu T., Yang M., Peh S., Xing J. Recent Advances in Biocatalysts Engineering for Polyethylene Terephthalate Plastic Waste Green Recycling. Environ. Int. 2020;145:106144. doi: 10.1016/j.envint.2020.106144.10.1016/j.envint.2020.10614432987219Cao F., Wang L., Zheng R., Guo L., Chen Y., Qian X. Research and Progress of Chemical Depolymerization of Waste PET and High-Value Application of Its Depolymerization Products. RSC Adv. 2022;12:31564–31576. doi: 10.1039/D2RA06499E.10.1039/D2RA06499EPMC963225236380916Khalaf H.I., Hasan O.A. Effect of Quaternary Ammonium Salt as a Phase Transfer Catalyst for the Microwave Depolymerization of Polyethylene Terephthalate Waste Bottles. Chem. Eng. J. 2012;192:45–48. doi: 10.1016/j.cej.2012.03.081.10.1016/j.cej.2012.03.081Wang Y., Wang H., Chen H., Liu H. Towards Recycling Purpose: Converting PET Plastic Waste Back to Terephthalic Acid Using PH-Responsive Phase Transfer Catalyst. Chin. J. Chem. Eng. 2022;51:53–60. doi: 10.1016/j.cjche.2021.10.028.10.1016/j.cjche.2021.10.028Zhang L., Gao J., Zou J., Yi F. Hydrolysis of Poly(Ethylene Terephthalate) Waste Bottles in the Presence of Dual Functional Phase Transfer Catalysts. J. Appl. Polym. Sci. 2013;130:2790–2795. doi: 10.1002/app.39497.10.1002/app.39497Singh S., Sharma S., Umar A., Mehta S.K., Bhatti M.S., Kansal S.K. Recycling of Waste Poly(Ethylene Terephthalate) Bottles by Alkaline Hydrolysis and Recovery of Pure Nanospindle-Shaped Terephthalic Acid. J. Nanosci. Nanotechnol. 2018;18:5804–5809. doi: 10.1166/jnn.2018.15363.10.1166/jnn.2018.1536329458644Štrukil V. Highly Efficient Solid-State Hydrolysis of Waste Polyethylene Terephthalate by Mechanochemical Milling and Vapor-Assisted Aging. ChemSusChem. 2021;14:330–338. doi: 10.1002/cssc.202002124.10.1002/cssc.20200212432986929Bhogle C.S., Pandit A.B. Ultrasound-Assisted Alkaline Hydrolysis of Waste Poly(Ethylene Terephthalate) in Aqueous and Non-Aqueous Media at Low Temperature. Indian Chem. Eng. 2018;60:122–140. doi: 10.1080/00194506.2017.1310634.10.1080/00194506.2017.1310634Yang W., Wang J., Jiao L., Song Y., Li C., Hu C. Easily Recoverable and Reusable p -Toluenesulfonic Acid for Faster Hydrolysis of Waste Polyethylene Terephthalate. Green Chem. 2022;24:1362–1372. doi: 10.1039/D1GC04567A.10.1039/D1GC04567ALi X.-K., Lu H., Guo W.-Z., Cao G.-P., Liu H.-L., Shi Y.-H. Reaction Kinetics and Mechanism of Catalyzed Hydrolysis of Waste PET Using Solid Acid Catalyst in Supercritical CO 2. AIChE J. 2015;61:200–214. doi: 10.1002/aic.14632.10.1002/aic.14632Guo W.-Z., Lu H., Li X.-K., Cao G.-P. Tungsten-Promoted Titania as Solid Acid for Catalytic Hydrolysis of Waste Bottle PET in Supercritical CO 2. RSC Adv. 2016;6:43171–43184. doi: 10.1039/C6RA06298A.10.1039/C6RA06298AYang W., Liu R., Li C., Song Y., Hu C. Hydrolysis of Waste Polyethylene Terephthalate Catalyzed by Easily Recyclable Terephthalic Acid. Waste Manag. 2021;135:267–274. doi: 10.1016/j.wasman.2021.09.009.10.1016/j.wasman.2021.09.00934555688Ügdüler S., Van Geem K.M., Denolf R., Roosen M., Mys N., Ragaert K., De Meester S. Towards Closed-Loop Recycling of Multilayer and Coloured PET Plastic Waste by Alkaline Hydrolysis. Green Chem. 2020;22:5376–5394. doi: 10.1039/D0GC00894J.10.1039/D0GC00894JLiu B., Lu X., Ju Z., Sun P., Xin J., Yao X., Zhou Q., Zhang S. Ultrafast Homogeneous Glycolysis of Waste Polyethylene Terephthalate via a Dissolution-Degradation Strategy. Ind. Eng. Chem. Res. 2018;57:16239–16245. doi: 10.1021/acs.iecr.8b03854.10.1021/acs.iecr.8b03854Ghosal K., Nayak C. Recent Advances in Chemical Recycling of Polyethylene Terephthalate Waste into Value Added Products for Sustainable Coating Solutions—Hope vs. Hype. Mater. Adv. 2022;3:1974–1992. doi: 10.1039/D1MA01112J.10.1039/D1MA01112JHu Y., Wang Y., Zhang X., Qian J., Xing X., Wang X. Synthesis of Poly(Ethylene Terephthalate) Based on Glycolysis of Waste PET Fiber. J. Macromol.Sci. Part A. 2020;57:430–438. doi: 10.1080/10601325.2019.1709498.10.1080/10601325.2019.1709498Moncada J., Dadmun M.D. The Structural Evolution of Poly(Ethylene Terephthalate) Oligomers Produced via Glycolysis Depolymerization. J. Mater. Chem. A Mater. 2023;11:4679–4690. doi: 10.1039/D2TA07467B.10.1039/D2TA07467BDeng L., Li R., Chen Y., Wang J., Song H. New Effective Catalysts for Glycolysis of Polyethylene Terephthalate Waste: Tropine and Tropine-Zinc Acetate Complex. J. Mol. Liq. 2021;334:116419. doi: 10.1016/j.molliq.2021.116419.10.1016/j.molliq.2021.116419Esquer R., García J.J. Metal-Catalysed Poly(Ethylene) Terephthalate and Polyurethane Degradations by Glycolysis. J. Organomet. Chem. 2019;902:120972. doi: 10.1016/j.jorganchem.2019.120972.10.1016/j.jorganchem.2019.120972Lei D., Sun X.-L., Hu S., Cheng H., Chen Q., Qian Q., Xiao Q., Cao C., Xiao L., Huang B. Rapid Glycolysis of Waste Polyethylene Terephthalate Fibers via a Stepwise Feeding Process. Ind. Eng. Chem. Res. 2022;61:4794–4802. doi: 10.1021/acs.iecr.1c05022.10.1021/acs.iecr.1c05022Son S.G., Jin S.B., Kim S.J., Park H.J., Shin J., Ryu T., Jeong J.-M., Choi B.G. Exfoliated Manganese Oxide Nanosheets as Highly Active Catalysts for Glycolysis of Polyethylene Terephthalate. FlatChem. 2022;36:100430. doi: 10.1016/j.flatc.2022.100430.10.1016/j.flatc.2022.100430Wang T., Zheng Y., Yu G., Chen X. Glycolysis of Polyethylene Terephthalate: Magnetic Nanoparticle CoFe2O4 Catalyst Modified Using Ionic Liquid as Surfactant. Eur. Polym. J. 2021;155:110590. doi: 10.1016/j.eurpolymj.2021.110590.10.1016/j.eurpolymj.2021.110590Guo Z., Adolfsson E., Tam P.L. Nanostructured Micro Particles as a Low-Cost and Sustainable Catalyst in the Recycling of PET Fiber Waste by the Glycolysis Method. Waste Manag. 2021;126:559–566. doi: 10.1016/j.wasman.2021.03.049.10.1016/j.wasman.2021.03.04933862509Putisompon S., Yunita I., Sugiyarto K.H., Somsook E. Low-Cost Catalyst for Glycolysis of Polyethylene Terephthalate (PET) Key. Eng. Mater. 2019;824:225–230. doi: 10.4028/www.scientific.net/KEM.824.225.10.4028/www.scientific.net/KEM.824.225Zangana K.H., Fernandez A., Holmes J.D. Simplified, Fast, and Efficient Microwave Assisted Chemical Recycling of Poly (Ethylene Terephthalate) Waste. Mater. Today Commun. 2022;33:104588. doi: 10.1016/j.mtcomm.2022.104588.10.1016/j.mtcomm.2022.104588Fang P., Liu B., Xu J., Zhou Q., Zhang S., Ma J., Lu X. High-Efficiency Glycolysis of Poly(Ethylene Terephthalate) by Sandwich-Structure Polyoxometalate Catalyst with Two Active Sites. Polym. Degrad. Stab. 2018;156:22–31. doi: 10.1016/j.polymdegradstab.2018.07.004.10.1016/j.polymdegradstab.2018.07.004Shuangjun C., Weihe S., Haidong C., Hao Z., Zhenwei Z., Chaonan F. Glycolysis of Poly(Ethylene Terephthalate) Waste Catalyzed by Mixed Lewis Acidic Ionic Liquids. J. Therm. Anal. Calorim. 2021;143:3489–3497. doi: 10.1007/s10973-020-10331-8.10.1007/s10973-020-10331-8Cano I., Martin C., Fernandes J.A., Lodge R.W., Dupont J., Casado-Carmona F.A., Lucena R., Cardenas S., Sans V., de Pedro I. Paramagnetic Ionic Liquid-Coated SiO2@Fe3O4 Nanoparticles—The next Generation of Magnetically Recoverable Nanocatalysts Applied in the Glycolysis of PET. Appl. Catal. B. 2020;260:118110. doi: 10.1016/j.apcatb.2019.118110.10.1016/j.apcatb.2019.118110Najafi-Shoa S., Barikani M., Ehsani M., Ghaffari M. Cobalt-Based Ionic Liquid Grafted on Graphene as a Heterogeneous Catalyst for Poly (Ethylene Terephthalate) Glycolysis. Polym. Degrad. Stab. 2021;192:109691. doi: 10.1016/j.polymdegradstab.2021.109691.10.1016/j.polymdegradstab.2021.109691Kim B.-K., Hwang G.-C., Bae S.-Y., Yi S.-C., Kumazawa H. Depolymerization of Polyethyleneterephthalate in Supercritical Methanol. J. Appl. Polym. Sci. 2001;81:2102–2108. doi: 10.1002/app.1645.10.1002/app.1645Mishra S., Goje A. Kinetic and Thermodynamic Study of Methanolysis of Poly(Ethylene Terephthalate) Waste Powder. Polym. Int. 2003;52:337–342. doi: 10.1002/pi.1147.10.1002/pi.1147Siddiqui M.N., Redhwi H.H., Achilias D.S. Recycling of Poly(Ethylene Terephthalate) Waste through Methanolic Pyrolysis in a Microwave Reactor. J. Anal. Appl. Pyrolysis. 2012;98:214–220. doi: 10.1016/j.jaap.2012.09.007.10.1016/j.jaap.2012.09.007Carné Sánchez A., Collinson S.R. The Selective Recycling of Mixed Plastic Waste of Polylactic Acid and Polyethylene Terephthalate by Control of Process Conditions. Eur. Polym. J. 2011;47:1970–1976. doi: 10.1016/j.eurpolymj.2011.07.013.10.1016/j.eurpolymj.2011.07.013Hofmann M., Sundermeier J., Alberti C., Enthaler S. Zinc(II) Acetate Catalyzed Depolymerization of Poly(Ethylene Terephthalate) ChemistrySelect. 2020;5:10010–10014. doi: 10.1002/slct.202002260.10.1002/slct.202002260Pham D.D., Cho J. Low-Energy Catalytic Methanolysis of Poly(Ethyleneterephthalate) Green Chem. 2021;23:511–525. doi: 10.1039/D0GC03536J.10.1039/D0GC03536JTang S., Li F., Liu J., Guo B., Tian Z., Lv J. Calcined Sodium Silicate as Solid Base Catalyst for Alcoholysis of Poly(Ethylene Terephthalate) J. Chem. Technol. Biotechnol. 2022;97:1305–1314. doi: 10.1002/jctb.7025.10.1002/jctb.7025Tang H., Li N., Li G., Wang A., Cong Y., Xu G., Wang X., Zhang T. Synthesis of Gasoline and Jet Fuel Range Cycloalkanes and Aromatics from Poly(Ethylene Terephthalate) Waste. Green Chem. 2019;21:2709–2719. doi: 10.1039/C9GC00571D.10.1039/C9GC00571DRodrigues Fernandes J., Pereira Amaro L., Curti Muniz E., Favaro S.L., Radovanovic E. PET Depolimerization in Supercritical Ethanol Conditions Catalysed by Nanoparticles of Metal Oxides. J. Supercrit. Fluids. 2020;158:104715. doi: 10.1016/j.supflu.2019.104715.10.1016/j.supflu.2019.104715Yang Y., Chen F., Shen T., Pariatamby A., Wen X., Yan M., Kanchanatip E. Catalytic Depolymerization of Waste Polyethylene Terephthalate Plastic in Supercritical Ethanol by ZnO/γ-Al2O3 Catalyst. Process Saf. Environ. Prot. 2023;173:881–892. doi: 10.1016/j.psep.2023.04.001.10.1016/j.psep.2023.04.001Lozano-Martinez P., Torres-Zapata T., Martin-Sanchez N. Directing Depolymerization of PET with Subcritical and Supercritical Ethanol to Different Monomers through Changes in Operation Conditions. ACS Sustain. Chem. Eng. 2021;9:9846–9853. doi: 10.1021/acssuschemeng.1c02489.10.1021/acssuschemeng.1c02489Yan M., Yang Y., Shen T., Grisdanurak N., Pariatamby A., Khalid M., Hantoko D., Wibowo H. Effect of Operating Parameters on Monomer Production from Depolymerization of Waste Polyethylene Terephthalate in Supercritical Ethanol. Process Saf. Environ. Prot. 2023;169:212–219. doi: 10.1016/j.psep.2022.11.011.10.1016/j.psep.2022.11.011Liu S., Wang Z., Li L., Yu S., Xie C., Liu F. Butanol Alcoholysis Reaction of Polyethylene Terephthalate Using Acidic Ionic Liquid as Catalyst. J. Appl. Polym. Sci. 2013;130:1840–1844. doi: 10.1002/app.39246.10.1002/app.39246Nikje M.M.A., Nazari F. Microwave-Assisted Depolymerization of Poly(Ethylene Terephthalate) [PET] at Atmospheric Pressure. Adv. Polym. Technol. 2006;25:242–246. doi: 10.1002/adv.20080.10.1002/adv.20080Dupont L., Gupta V.P. Production of Terephthalate Esters by Degradative Transesterification of Scrap or Virgin Terephthalate Polyesters 1994. [(accessed on 26 November 2024)]. Available online: https://patents.google.com/patent/US5319128A/en.Dupont L.A., Gupta V.P. Degradative Transesterification of Terephthalate Polyesters to Obtain DOTP Plasticizer for Flexible PVC. J. Vinyl Addit. Technol. 1993;15:100–104. doi: 10.1002/vnl.730150210.10.1002/vnl.730150210Liu S., Zhou L., Li L., Yu S., Liu F., Xie C., Song Z. Isooctanol Alcoholysis of Waste Polyethylene Terephthalate in Acidic Ionic Liquid. J. Polym. Res. 2013;20:310. doi: 10.1007/s10965-013-0310-6.10.1007/s10965-013-0310-6Chen J., Lv J., Ji Y., Ding J., Yang X., Zou M., Xing L. Alcoholysis of PET to Produce Dioctyl Terephthalate by Isooctyl Alcohol with Ionic Liquid as Cosolvent. Polym Degrad. Stab. 2014;107:178–183. doi: 10.1016/j.polymdegradstab.2014.05.013.10.1016/j.polymdegradstab.2014.05.013Zhou L., Lu X., Ju Z., Liu B., Yao H., Xu J., Zhou Q., Hu Y., Zhang S. Alcoholysis of Polyethylene Terephthalate to Produce Dioctyl Terephthalate Using Choline Chloride-Based Deep Eutectic Solvents as Efficient Catalysts. Green Chem. 2019;21:897–906. doi: 10.1039/C8GC03791D.10.1039/C8GC03791DRusmirovic J., Milosevic D., Velicic Z., Karanac M., Kalifa M., Nikolic J., Marinkovic A. Production of Rubber Plasticizers Based on Waste PET: Techno-Economical Aspect. Zast. Mater. 2017;58:189–197. doi: 10.5937/ZasMat1702189R.10.5937/ZasMat1702189RGoto M., Koyamoto H., Kodama A., Hirose T., Nagaoka S. Depolymerization of Polyethylene Terephthalate in Supercritical Methanol. J. Phys. Condens. Matter. 2002;14:11427–11430. doi: 10.1088/0953-8984/14/44/494.10.1088/0953-8984/14/44/494Mohsin M.A., Alnaqbi M.A., Busheer R.M., Haik Y. Sodium Methoxide Catalyzed Depolymerization of Waste Polyethylene Terephthalate Under Microwave Irradiation. Catal. Ind. 2018;10:41–48. doi: 10.1134/S2070050418010087.10.1134/S2070050418010087Nunes C.S., Vieira da Silva M.J., Cristina da Silva D., Freitas A.d.R., Rosa F.A., Rubira A.F., Muniz E.C. PET Depolymerisation in Supercritical Ethanol Catalysed by [Bmim][BF4] RSC Adv. 2014;4:20308–20316. doi: 10.1039/C4RA00262H.10.1039/C4RA00262HNunes C., Souza P., Freitas A., Silva M., Rosa F., Muniz E. Poisoning Effects of Water and Dyes on the [Bmim][BF4] Catalysis of Poly(Ethylene Terephthalate) (PET) Depolymerization under Supercritical Ethanol. Catal. 2017;7:43. doi: 10.3390/catal7020043.10.3390/catal7020043Fukushima K., Coulembier O., Lecuyer J.M., Almegren H.A., Alabdulrahman A.M., Alsewailem F.D., Mcneil M.A., Dubois P., Waymouth R.M., Horn H.W., et al. Organocatalytic Depolymerization of Poly(Ethylene Terephthalate) J. Polym. Sci. A Polym. Chem. 2011;49:1273–1281. doi: 10.1002/pola.24551.10.1002/pola.24551Jia S., Ren Y., Zhang D., Hu J., Zeng Y., Wang G. Stannous Oxalate: An Efficient Catalyst for Poly(Trimethylene Terephthalate) Synthesis. Sci. China. B Chem. 2008;51:257–262. doi: 10.1007/s11426-007-0124-7.10.1007/s11426-007-0124-7Xie H., Meng H., Wu L., Li B.-G., Dubois P. In-Situ Synthesis, Thermal and Mechanical Properties of Biobased Poly(Ethylene 2,5-Furandicarboxylate)/Montmorillonite (PEF/MMT) Nanocomposites. Eur. Polym. J. 2019;121:109266. doi: 10.1016/j.eurpolymj.2019.109266.10.1016/j.eurpolymj.2019.109266Wilfong R.E. Linear Polyesters. J. Polym. Sci. 1961;54:385–410. doi: 10.1002/pol.1961.1205416010.10.1002/pol.1961.1205416010Dong H., Esser-Kahn A.P., Thakre P.R., Patrick J.F., Sottos N.R., White S.R., Moore J.S. Chemical Treatment of Poly(Lactic Acid) Fibers to Enhance the Rate of Thermal Depolymerization. ACS Appl. Mater. Interfaces. 2012;4:503–509. doi: 10.1021/am2010042.10.1021/am201004222008224Asakuma Y., Yamamura Y., Nakagawa K., Maeda K., Fukui K. Mechanism of Depolymerization Reaction of Polyethylene Terephthalate: Experimental and Theoretical Studies. J. Polym. Environ. 2011;19:209–216. doi: 10.1007/s10924-010-0263-3.10.1007/s10924-010-0263-3Poller R.C., Retout S.P. Organotin Compounds as Transesterification Catalysts. J. Organomet. Chem. 1979;173:C7–C8. doi: 10.1016/S0022-328X(00)84794-4.10.1016/S0022-328X(00)84794-4Muszyński M., Nowicki J., Krasuska A., Nowakowska-Bogdan E., Bartoszewicz M., Długosz M., Zygadło M., Dudek G. Synthesis of Bis(2-Ethylhexyl) Terephthalate from Waste Poly(Ethylene Terephthalate) Catalyzed by Tin Catalysts. Polym. Degrad. Stab. 2023;218:110592. doi: 10.1016/j.polymdegradstab.2023.110592.10.1016/j.polymdegradstab.2023.110592López-Fonseca R., Duque-Ingunza I., de Rivas B., Flores-Giraldo L., Gutiérrez-Ortiz J.I. Kinetics of Catalytic Glycolysis of PET Wastes with Sodium Carbonate. Chem. Eng. J. 2011;168:312–320. doi: 10.1016/j.cej.2011.01.031.10.1016/j.cej.2011.01.031Le N.H., Ngoc Van T.T., Shong B., Cho J. Low-Temperature Glycolysis of Polyethylene Terephthalate. ACS Sustain. Chem. Eng. 2022;10:17261–17273. doi: 10.1021/acssuschemeng.2c05570.10.1021/acssuschemeng.2c05570Casas A., Ramos M.J., Rodríguez J.F., Pérez Á. Tin Compounds as Lewis Acid Catalysts for Esterification and Transesterification of Acid Vegetable Oils. Fuel Process. Technol. 2013;106:321–325. doi: 10.1016/j.fuproc.2012.08.015.10.1016/j.fuproc.2012.08.015Ferreira D.A.C., Meneghetti M.R., Meneghetti S.M.P., Wolf C.R. Methanolysis of Soybean Oil in the Presence of Tin(IV) Complexes. Appl. Catal. A Gen. 2007;317:58–61. doi: 10.1016/j.apcata.2006.10.002.10.1016/j.apcata.2006.10.002
trying2...
Surface Modification of Black Phosphorus with Group 13 Lewis Acids for Ambient Protection and Electronic Tuning. | LitMetric

Herein we introduce a facile, solution-phase protocol to modify the Lewis basic surface of few-layer black phosphorus (bP) and demonstrate its effectiveness at providing ambient stability and tuning of electronic properties. Commercially available group 13 Lewis acids that range in electrophilicity, steric bulk, and Pearson hard/soft-ness are evaluated. The nature of the interaction between the Lewis acids and the bP lattice is investigated using a range of microscopic (optical, atomic force, scanning electron) and spectroscopic (energy dispersive, X-ray photoelectron) methods. Al and Ga halides are most effective at preventing ambient degradation of bP (>84 h for AlBr ), and the resulting field-effect transistors show excellent IV characteristics, photocurrent, and current stability, and are significantly p-doped. This protocol, chemically matched to bP and compatible with device fabrication, opens a path for deterministic and persistent tuning of the electronic properties in bP.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202100308DOI Listing

Publication Analysis

Top Keywords

lewis acids
12
black phosphorus
8
group lewis
8
tuning electronic
8
electronic properties
8
surface modification
4
modification black
4
phosphorus group
4
lewis
4
acids ambient
4

Similar Publications

Healing the heart, one variant at a time.

Mol Ther Nucleic Acids

March 2025

Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.

View Article and Find Full Text PDF

Solvent-Free Chemical Recycling of Polyesters and Polycarbonates by Magnesium-based Lewis Acid Catalyst.

Angew Chem Int Ed Engl

December 2024

Jilin University College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, 2699 Qianjin Street, 130012, Changchun, CHINA.

Developing a simple and efficient catalyst system for closed-loop recycling of polymers to monomers is an essentially important but challenging task for the recycle of polymer wastes and preventing the downcycle of plastic products. Herein, we employ inexpensive, commercially available Lewis acids (LAs) to achieve closed-loop recycling in bulk through the catalytic depolymerization of aliphatic polyesters and polycarbonates. The scope of LAs is screened by thermogravimetric analysis experiments and distillation experiments.

View Article and Find Full Text PDF

Cancers utilize a simple glycan, Sialic Acid, to engage in metastatic processes via the Sialic acid (Sia) -Selectin pathway. Selectins recognize and bind to sialylated substrates, resulting in adhesion, migration, and extravasation, however, how deviations from the canonical form of Sia regulate binding to Selectin receptors (E, L, and P) on hemopoietic cells resulting in these metastatic processes, remained a gap in knowledge. De-O-acetylated Sias has been recently shown to be an integral substrate to the binding of sialic acid binding proteins.

View Article and Find Full Text PDF

Non-covalent organocatalyzed enantioselective cyclization reactions of α,β-unsaturated imines.

Beilstein J Org Chem

December 2024

Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (IRYCIS), 28805 Madrid, Spain.

Asymmetric cycloaddition is a straightforward strategy which enables the synthesis of structurally distinct cyclic derivatives which are difficult to access by other methodologies, using an efficient and atom-economical path from simple precursors. In recent years several asymmetric catalytic cyclization strategies have been accomplished for the construction of -heterocycles using various catalytic systems such as chiral metal catalysts, chiral Lewis acids or chiral organocatalysts. This review presents an overview of the recent advances in enantioselective cyclization reactions of 1-azadienes catalyzed by non-covalent organocatalysts.

View Article and Find Full Text PDF

Synthesis of Bis(isodecyl Terephthalate) from Waste Poly(ethylene Terephthalate) Catalyzed by Lewis Acid Catalysts.

Int J Mol Sci

December 2024

Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland.

Increasing plastic waste generation has become a pressing environmental problem. One of the most produced waste plastics originates from post-consumer packaging, of which PET constitutes a significant portion. Despite increasing recycling rates, its accumulation has created a need for the development of new recycling methods that can further expand the possibilities of recycling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!