trying...
33480169 2021 04 01 1521-3773 60 15 2021 Apr 06 Angewandte Chemie (International ed. in English) Angew Chem Int Ed Engl Surface Modification of Black Phosphorus with Group 13 Lewis Acids for Ambient Protection and Electronic Tuning. 8329 8336 8329-8336 10.1002/anie.202100308 Herein we introduce a facile, solution-phase protocol to modify the Lewis basic surface of few-layer black phosphorus (bP) and demonstrate its effectiveness at providing ambient stability and tuning of electronic properties. Commercially available group 13 Lewis acids that range in electrophilicity, steric bulk, and Pearson hard/soft-ness are evaluated. The nature of the interaction between the Lewis acids and the bP lattice is investigated using a range of microscopic (optical, atomic force, scanning electron) and spectroscopic (energy dispersive, X-ray photoelectron) methods. Al and Ga halides are most effective at preventing ambient degradation of bP (>84 h for AlBr3 ), and the resulting field-effect transistors show excellent IV characteristics, photocurrent, and current stability, and are significantly p-doped. This protocol, chemically matched to bP and compatible with device fabrication, opens a path for deterministic and persistent tuning of the electronic properties in bP. © 2021 Wiley-VCH GmbH. Tofan Daniel D 0000-0001-5335-1558 Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA. Sakazaki Yukako Y Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA. Walz Mitra Kendahl L KL 0000-0002-1250-8819 Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA. Peng Ruoming R Department of Electrical and Computer Engineering, Department of Physics, University of Washington, Paul Allen Center, 185 E Stevens Way NE, Seattle, WA, 98195, USA. Lee Seokhyeong S Department of Electrical and Computer Engineering, Department of Physics, University of Washington, Paul Allen Center, 185 E Stevens Way NE, Seattle, WA, 98195, USA. Li Mo M 0000-0002-5500-0900 Department of Electrical and Computer Engineering, Department of Physics, University of Washington, Paul Allen Center, 185 E Stevens Way NE, Seattle, WA, 98195, USA. Velian Alexandra A 0000-0002-6782-7139 Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA. eng 1719797 AM005 MRSEC Seed Division of Materials Research Journal Article 2021 03 05 Germany Angew Chem Int Ed Engl 0370543 1433-7851 IM Lewis acids black phosphorus doping field-effect transistors surface chemistry 2021 1 7 2021 1 23 6 0 2021 1 23 6 1 2021 1 22 6 32 ppublish 33480169 10.1002/anie.202100308 R. Peng, K. Khaliji, N. Youngblood, R. Grassi, T. Low, M. Li, Nano Lett. 2017, 17, 6315-6320. H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P. D. Ye, ACS Nano 2014, 8, 4033-4041. L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang, Nat. Nanotechnol. 2014, 9, 372-377. N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, J. Zhang, J. Am. Chem. Soc. 2016, 138, 300-305. N. Izquierdo, J. C. Myers, N. C. A. Seaton, S. K. Pandey, S. A. Campbell, ACS Nano 2019, 13, 7091-7099. K. L. Utt, P. Rivero, M. Mehboudi, E. O. Harriss, M. F. Borunda, A. A. Pacheco SanJuan, S. Barraza-Lopez, ACS Cent. Sci. 2015, 1, 320-327. K. L. Kuntz, R. A. Wells, J. Hu, T. Yang, B. Dong, H. Guo, A. H. Woomer, D. L. Druffel, A. Alabanza, D. Tománek, S. C. Warren, ACS Appl. Mater. Interfaces 2017, 9, 9126-9135. M. van Druenen, F. Davitt, T. Collins, C. Glynn, C. O'Dwyer, J. D. Holmes, G. Collins, Langmuir 2019, 35, 2172-2178. S. Wild, V. Lloret, V. Vega-Mayoral, D. Vella, E. Nuin, M. Siebert, M. Koleśnik-Gray, M. Löffler, K. J. J. Mayrhofer, C. Gadermaier, V. Krstić, F. Hauke, G. Abellán, A. Hirsch, RSC Adv. 2019, 9, 3570-3576. J. Pei, X. Gai, J. Yang, X. Wang, Z. Yu, D.-Y. Choi, B. Luther-Davies, Y. Lu, Nat. Commun. 2016, 7, 10450. J.-S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, D. Akinwande, Sci. Rep. 2015, 5, 8989. Y. Abate, D. Akinwande, S. Gamage, H. Wang, M. Snure, N. Poudel, S. B. Cronin, Adv. Mater. 2018, 30, 1704749. J. D. Wood, S. A. Wells, D. Jariwala, K.-S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, M. C. Hersam, Nano Lett. 2014, 14, 6964-6970. R. A. Doganov, E. C. T. O'Farrell, S. P. Koenig, Y. Yeo, A. Ziletti, A. Carvalho, D. K. Campbell, D. F. Coker, K. Watanabe, T. Taniguchi, A. H. C. Neto, B. Özyilmaz, Nat. Commun. 2015, 6, 6647. G. Abellán, V. Lloret, U. Mundloch, M. Marcia, C. Neiss, A. Görling, M. Varela, F. Hauke, A. Hirsch, Angew. Chem. Int. Ed. 2016, 55, 14557-14562; Angew. Chem. 2016, 128, 14777-14782. Y. Zhao, H. Wang, H. Huang, Q. Xiao, Y. Xu, Z. Guo, H. Xie, J. Shao, Z. Sun, W. Han, X.-F. Yu, P. Li, P. K. Chu, Angew. Chem. Int. Ed. 2016, 55, 5003-5007; Angew. Chem. 2016, 128, 5087-5091. G. Abellán, S. Wild, V. Lloret, N. Scheuschner, R. Gillen, U. Mundloch, J. Maultzsch, M. Varela, F. Hauke, A. Hirsch, J. Am. Chem. Soc. 2017, 139, 10432-10440. R. Gusmão, Z. Sofer, M. Pumera, ACS Nano 2018, 12, 5666-5673. M. Bolognesi, S. Moschetto, M. Trapani, F. Prescimone, C. Ferroni, G. Manca, A. Ienco, S. Borsacchi, M. Caporali, M. Muccini, M. Peruzzini, M. Serrano-Ruiz, L. Calucci, M. A. Castriciano, S. Toffanin, ACS Appl. Mater. Interfaces 2019, 11, 22637-22647. M. Bolognesi, M. Brucale, A. Lorenzoni, F. Prescimone, S. Moschetto, V. V. Korolkov, M. Baldoni, M. Serrano-Ruiz, M. Caporali, F. Mercuri, E. Besley, M. Muccini, M. Peruzzini, P. H. Beton, S. Toffanin, Nanoscale 2019, 11, 17252-17261. M. Peruzzini, R. Bini, M. Bolognesi, M. Caporali, M. Ceppatelli, F. Cicogna, S. Coiai, S. Heun, A. Ienco, I. I. Benito, A. Kumar, G. Manca, E. Passaglia, D. Scelta, M. Serrano-Ruiz, F. Telesio, S. Toffanin, M. Vanni, Eur. J. Inorg. Chem. 2019, 1476-1494. C. R. Ryder, J. D. Wood, S. A. Wells, Y. Yang, D. Jariwala, T. J. Marks, G. C. Schatz, M. C. Hersam, Nat. Chem. 2016, 8, 597-602. Z. Sofer, J. Luxa, D. Bouša, D. Sedmidubský, P. Lazar, T. Hartman, H. Hardtdegen, M. Pumera, Angew. Chem. Int. Ed. 2017, 56, 9891-9896; Angew. Chem. 2017, 129, 10023-10028. M. van Druenen, F. Davitt, T. Collins, C. Glynn, C. O'Dwyer, J. D. Holmes, G. Collins, Chem. Mater. 2018, 30, 4667-4674. Y. Liu, P. Gao, T. Zhang, X. Zhu, M. Zhang, M. Chen, P. Du, G. Wang, H. Ji, J. Yang, S. Yang, Angew. Chem. Int. Ed. 2019, 58, 1479-1483; Angew. Chem. 2019, 131, 1493-1497. K. Walz Mitra, C. H. Chang, M. P. Hanrahan, J. Yang, D. Tofan, W. M. Holden, N. Govind, G. Seidler, A. J. Rossini, A. Velian, Angew. Chem. Int. Ed. 2021, https://doi.org/10.1002/anie.202016033; Angew. Chem. 2021, https://doi.org/10.1002/ange.202016033. A. Ienco, G. Manca, M. Peruzzini, C. Mealli, Dalton Trans. 2018, 47, 17243-17256. J. Su, T. Mou, J. Wen, B. Wang, Appl. Surf. Sci. 2020, 518, 146210. Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, X.-F. Yu, Adv. Mater. 2017, 29, 1703811. A. H. Woomer, T. W. Farnsworth, J. Hu, R. A. Wells, C. L. Donley, S. C. Warren, ACS Nano 2015, 9, 8869-8884. A. Staubitz, A. P. M. Robertson, M. E. Sloan, I. Manners, Chem. Rev. 2010, 110, 4023-4078. W. H. N. Vriezen, F. Jellinek, Recl. Trav. Chim. Pays-Bas 1970, 89, 1306-1312. E. I. Davydova, T. N. Sevastianova, A. Y. Timoshkin, Coord. Chem. Rev. 2015, 297-298, 91-126. R. G. Pearson, J. Am. Chem. Soc. 1963, 85, 3533-3539. H. Chen, W. Fei, J. Zhou, C. Miao, W. Guo, Small 2017, 13, 1602336. T. A. Egerton, N. J. Everall, I. R. Tooley, Langmuir 2005, 21, 3172-3178. Y. K. Ryu, A. Castellanos-Gomez, R. Frisenda in Fundamentals and Applications of Phosphorus Nanomaterials (Ed.: H.-F. Ji), American Chemical Society, Washington, 2019, pp. 47-59. J. M. Hogg, L. C. Brown, K. Matuszek, P. Latos, A. Chrobok, M. Swadźba-Kwaśny, Dalton Trans. 2017, 46, 11561-11574. P. Vishnoi, U. Gupta, R. Pandey, C. N. R. Rao, J. Mater. Chem. A 2019, 7, 6631-6637. C. A. Tolman, Chem. Rev. 1977, 77, 313-348. A. J. V. Marwitz, J. L. Dutton, L. G. Mercier, W. E. Piers, J. Am. Chem. Soc. 2011, 133, 10026-10029. A. El-Hellani, J. Monot, S. Tang, R. Guillot, C. Bour, V. Gandon, Inorg. Chem. 2013, 52, 11493-11502. G. Ménard, D. W. Stephan, J. Am. Chem. Soc. 2010, 132, 1796-1797. T. Yang, B. Dong, J. Wang, Z. Zhang, J. Guan, K. Kuntz, S. C. Warren, D. Tománek, Phys. Rev. B 2015, 92, 125412. J. L. Bourque, M. C. Biesinger, K. M. Baines, Dalton Trans. 2016, 45, 7678-7696. R. Binions, C. J. Carmalt, I. P. Parkin, K. F. E. Pratt, G. A. Shaw, Chem. Mater. 2004, 16, 2489-2493. N. Yadava, R. K. Chauhan, ECS J. Solid State Sci. Technol. 2019, 8, Q3058-Q3063. C. Powell, 1989, https://doi.org/10.18434/T4T88K. M. Broas, O. Kanninen, V. Vuorinen, M. Tilli, M. Paulasto-Kröckel, ACS Omega 2017, 2, 3390-3398. T. Tsujide, S. Nakanuma, Y. Ikushima, J. Electrochem. Soc. 1970, 117, 703. A. I. Aria, K. Nakanishi, L. Xiao, P. Braeuninger-Weimer, A. A. Sagade, J. A. Alexander-Webber, S. Hofmann, ACS Appl. Mater. Interfaces 2016, 8, 30564-30575. R. Galceran, E. Gaufres, A. Loiseau, M. Piquemal-Banci, F. Godel, A. Vecchiola, O. Bezencenet, M.-B. Martin, B. Servet, F. Petroff, B. Dlubak, P. Seneor, Appl. Phys. Lett. 2017, 111, 243101. X. Luo, Y. Rahbarihagh, J. C. M. Hwang, H. Liu, Y. Du, P. D. Ye, IEEE Electron Device Lett. 2014, 35, 1314-1316. C. Chen, N. Youngblood, R. Peng, D. Yoo, D. A. Mohr, T. W. Johnson, S.-H. Oh, M. Li, Nano Lett. 2017, 17, 985-991. N. Youngblood, C. Chen, S. J. Koester, M. Li, Nat. Photonics 2015, 9, 247-252. T. Hong, B. Chamlagain, W. Lin, H.-J. Chuang, M. Pan, Z. Zhou, Y.-Q. Xu, Nanoscale 2014, 6, 8978-8983. T. Low, M. Engel, M. Steiner, P. Avouris, Phys. Rev. B 2014, 90, 081408. S. Gamage, Z. Li, V. S. Yakovlev, C. Lewis, H. Wang, S. B. Cronin, Y. Abate, Adv. Mater. Interfaces 2016, 3, 1600121. trying2... trying...
7118 5 0 1 MCID_676f0865c5b23875e7097ebd
39719981
39719037
39717751
39691215
39684664
lewis acids "lewis acids"[MeSH Terms] OR ("lewis"[All Fields] AND "acids"[All Fields]) OR "lewis acids"[All Fields] "lewis acids"[MeSH Terms] OR ("lewis"[All Fields] AND "acids"[All Fields]) OR "lewis acids"[All Fields]
trying2... trying...
39719981 2024 12 25 2162-2531 36 1 2025 Mar 11 Molecular therapy. Nucleic acids Mol Ther Nucleic Acids Healing the heart, one variant at a time. 102407 102407 102407 10.1016/j.omtn.2024.102407 Mohsin Sadia S Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA. Yang Xiaofeng X Lemole Cener for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA. Wang Hong H Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA. Khan Mohsin M Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA. Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA. eng News 2024 12 07 United States Mol Ther Nucleic Acids 101581621 2162-2531 The authors declare no competing interests. 2024 12 25 6 21 2024 12 25 6 20 2024 12 25 4 14 2024 12 7 epublish 39719981 PMC11667695 10.1016/j.omtn.2024.102407 S2162-2531(24)00294-4 Khan M., Nickoloff E., Abramova T., Johnson J., Verma S.K., Krishnamurthy P., Mackie A.R., Vaughan E., Garikipati V.N.S., Benedict C., et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ. Res. 2015;117:52–64. PMC4482130 25904597 Marban E. Deconstructing Regenerative Medicine: From Mechanistic Studies of Cell Therapy to Novel Bioinspired RNA Drugs. Circ. Res. 2024;135:877–885. PMC11469554 39325847 Mattick J.S., Amaral P.P., Carninci P., Carpenter S., Chang H.Y., Chen L.L., Chen R., Dean C., Dinger M.E., Fitzgerald K.A., et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 2023;24:430–447. PMC10213152 36596869 Anderson K.M., Anderson D.M. LncRNAs at the heart of development and disease. Mamm. Genome. 2022;33:354–365. 35048139 Rigaud V.O.C., Hoy R.C., Kurian J., Zarka C., Behanan M., Brosious I., Pennise J., Patel T., Wang T., Johnson J., et al. RNA-Binding Protein LIN28a Regulates New Myocyte Formation in the Heart Through Long Noncoding RNA-H19. Circulation. 2023;147:324–337. PMC9870945 36314132 Busscher D., Boon R.A., Juni R.P. The multifaceted actions of the lncRNA H19 in cardiovascular biology and diseases. Clin. Sci. 2022;136:1157–1178. PMC9366862 35946958 Vilaca A., Jesus C., Lino M., Hayman D., Emanueli C., Terracciano C.M., Fernandes H., de Windt L.J., Ferreira L. Extracellular vesicle transfer of lncRNA H19 splice variants to cardiac cells. Mol. Ther. Nucleic Acids. 2024;35:102233. PMC11225836 38974998 Herrmann I.K., Wood M.J.A., Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 2021;16:748–759. 34211166 Wang T., Huang W., Gao X., Deng Y., Huang J. Single extracellular vesicle research: From cell population to a single cell. Biochem. Biophys. Res. Commun. 2024;734 39083971 Wan Z., Liu T., Xu N., Zhu W., Zhang X., Liu Q., Wang H., Wang H. PKH Dyes Should Be Avoided in the EVs Biodistribution Study of the Brain: A Call for Caution. Int. J. Nanomedicine. 2024;19:10885–10898. PMC11523927 39479172 39719037 2024 12 24 1521-3773 2024 Dec 24 Angewandte Chemie (International ed. in English) Angew Chem Int Ed Engl Solvent-Free Chemical Recycling of Polyesters and Polycarbonates by Magnesium-based Lewis Acid Catalyst. e202420688 e202420688 10.1002/anie.202420688 Developing a simple and efficient catalyst system for closed-loop recycling of polymers to monomers is an essentially important but challenging task for the recycle of polymer wastes and preventing the downcycle of plastic products. Herein, we employ inexpensive, commercially available Lewis acids (LAs) to achieve closed-loop recycling in bulk through the catalytic depolymerization of aliphatic polyesters and polycarbonates. The scope of LAs is screened by thermogravimetric analysis experiments and distillation experiments. MgCl2 shows the best catalytic performance that can efficiently depolymerize eleven aliphatic polyesters and polycarbonates (i.e. poly(ε-caprolactone) and poly(trimethylene carbonate)), into monomers (up to 98% yield) at temperatures significantly lower than the ceiling temperature. Moreover, this catalyst system exhibits high selectivity and compatibility towards the depolymerization of (co)polyesters as well as the blends of polyesters and polycarbonates in the presence of other commodity plastics, as well as excellent recycle and reuse catalyst performance. Mechanistic studies indicate that the closed-loop recycling of monomers is achieved through the random chain scission and terminal group cyclization. © 2024 Wiley‐VCH GmbH. Zhao Wuchao W Jilin University College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun, Jilin, 130012 (China), 2699 Qianjin street, 130012, Changchun, CHINA. Guo Zongpeng Z Jilin University College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun, Jilin, 130012 (China), 2699 Qianjin street, 130012, Changchun, CHINA. He Jianghua J Jilin University College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun, Jilin, 130012 (China), 2699 Qianjin street, 130012, Changchun, CHINA. Zhang Yuetao Y Jilin University College of Chemistry, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, 2699 Qianjin Street, 130012, Changchun, CHINA. eng Journal Article 2024 12 24 Germany Angew Chem Int Ed Engl 0370543 1433-7851 IM Closed-Loop Depolymerization Polycarbonates chemical recycling polyesters 2024 12 2 2024 10 24 2024 12 23 2024 12 24 18 20 2024 12 24 18 20 2024 12 24 14 52 aheadofprint 39719037 10.1002/anie.202420688 39717751 2024 12 24 2234-943X 14 2024 Frontiers in oncology Front Oncol Early in vitro results indicate that de-O-acetylated sialic acids increase Selectin binding in cancers. 1443303 1443303 1443303 10.3389/fonc.2024.1443303 Cancers utilize a simple glycan, Sialic Acid, to engage in metastatic processes via the Sialic acid (Sia) -Selectin pathway. Selectins recognize and bind to sialylated substrates, resulting in adhesion, migration, and extravasation, however, how deviations from the canonical form of Sia regulate binding to Selectin receptors (E, L, and P) on hemopoietic cells resulting in these metastatic processes, remained a gap in knowledge. De-O-acetylated Sias has been recently shown to be an integral substrate to the binding of sialic acid binding proteins. The two proteins responsible for regulating the acetyl functional group on Sia's C6 tail, are Sialic acid acetylesterase (SIAE) and Sialic acid O acetyltransferase (CASD1). To elucidate the contribution of functional group alterations on Sia, 9-O and 7,9-O-acetylation of Sia was modulated via the use of CRISRP-Cas9 gene editing and with Sialyl Glycan Recognition Probes, to produce either O-acetylated-Sia or de-O-acetylated- Sia, respectively. In vitro experiments revealed that increased cell surface expression of de-O-acetylated- Sia resulted in an increase in Selectin binding, enhanced cell proliferation, and increased migration capabilities both in lung and colon cancer. These results delineate for the first time the mechanistic contribution of de-O-acetylated-Sia to Selectin binding, reinforcing the importance of elucidating functional group alterations on Sia and their contribution. Without accurate identification of which functionalized form of Sia is being utilized to bind to sialic acid binding proteins, we cannot accurately produce glycan therapeutics with the correct specificity and reactivity, thus this work contributes an integral component in the development of promising therapeutic avenues, for example in the realm of enzyme antibody drug conjugates. Copyright © 2024 Das, Schulte, Gerhart, Bayoumi, Paulson, Fink, Parrish and Willand-Charnley. Das Kakali K Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States. Schulte Megan M Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States. Gerhart Megan M Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States. Bayoumi Hala H Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States. Paulson Delayna D Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States. Fink Darci M DM Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States. Parrish Colin C Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States. Willand-Charnley Rachel R Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, United States. eng Journal Article 2024 12 09 Switzerland Front Oncol 101568867 2234-943X PSGL-1 Sialyl Lewis X cancer de-O-acetylated sialic acid metastasis migration selectins sia-selectin pathway The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. 2024 6 3 2024 11 11 2024 12 24 6 21 2024 12 24 6 20 2024 12 24 4 50 2024 1 1 epublish 39717751 PMC11663943 10.3389/fonc.2024.1443303 Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. (2015) 15:540–55. doi: 10.1038/nrc3982 10.1038/nrc3982 26289314 Mann B, Klussmann E, Vandamme-Feldhaus V, Iwersen M, Hanski ML, Riecken EO, et al. . Low O-acetylation of sialyl-Le(x) contributes to its overexpression in colon carcinoma metastases. Int J Cancer. (1997) 72:258–64. doi: 10.1002/(SICI)1097-0215(19970717)72:2<258::AID-IJC10>3.0.CO;2-C 10.1002/(SICI)1097-0215(19970717)72:2<258::AID-IJC10>3.0.CO;2-C 9219830 Borsig L. Selectins in cancer immunity. Glycobiology. (2018) 28:648–55. doi: 10.1093/glycob/cwx105 10.1093/glycob/cwx105 PMC6711759 29272415 Das K. Elucidating the role of sialic acid in tumorigenic pathways. In: Chemistry, Biochemistry and Physics. Brookings, South Dakota 57007: South Dakota State University; (2024). Sahai E. Illuminating the metastatic process. Nat Rev Cancer. (2007) 7:737–49. doi: 10.1038/nrc2229 10.1038/nrc2229 17891189 Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog. (2013) 18:43–73. doi: 10.1615/CritRevOncog.v18.i1-2.40 10.1615/CritRevOncog.v18.i1-2.40 PMC3597235 23237552 Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer. Annu Rev Pathol. (2015) 10:473–510. doi: 10.1146/annurev-pathol-012414-040438 10.1146/annurev-pathol-012414-040438 PMC4396820 25621663 Bull C, Stoel MA, Brok den MH, Adema GJ. Sialic acids sweeten a tumor’s life. Cancer Res. (2014) 74:3199–204. doi: 10.1158/0008-5472.CAN-14-0728 10.1158/0008-5472.CAN-14-0728 24830719 Scupakova K, Adelaja OT, Balluff B, Ayyappan V, Tressler CM, Jenkinson NM, et al. . Clinical importance of high-mannose, fucosylated, and complex N-glycans in breast cancer metastasis. JCI Insight. (2021) 6. doi: 10.1172/jci.insight.146945 10.1172/jci.insight.146945 PMC8783675 34752419 Barkeer S, Chugh S, Batra SK, Ponnusamy MP. Glycosylation of cancer stem cells: function in stemness, tumorigenesis, and metastasis. Neoplasia. (2018) 20:813–25. doi: 10.1016/j.neo.2018.06.001 10.1016/j.neo.2018.06.001 PMC6037882 30015157 Tvaroska I, Selvaraj C, Koca J. Selectins-the two Dr. Jekyll and Mr. Hyde faces of adhesion molecules-A review. Molecules. (2020) 25. doi: 10.3390/molecules25122835 10.3390/molecules25122835 PMC7355470 32575485 Grabenstein S, Barnard KN, Anim M, Armoo A, Weichert WS, Bertozzi CR, et al. . Deacetylated sialic acids modulates immune mediated cytotoxicity via the sialic acid-Siglec pathway. Glycobiology. (2021) 31:1279–94. doi: 10.1093/glycob/cwab068 10.1093/glycob/cwab068 34192335 Tuffour I, Amuzu S, Bayoumi H, Surtaj I, Parrish C, Willand-Charnley R. Early in vitro evidence indicates that deacetylated sialic acids modulate multi-drug resistance in colon and lung cancers via breast cancer resistance protein. Front Oncol. (2023) 13:1145333. doi: 10.3389/fonc.2023.1145333 10.3389/fonc.2023.1145333 PMC10291187 37377914 Tuffour I. Modulatory effects of deacetylated sialic acids on breast cancer resistance protein-mediated multidrug resistance and receptor tyrosine kinase-targeted therapy. In: Chemistry, Biochemistry, and Physics. Brookings, South Dakota: South Dakota State Univeersity; (2023). Wilson DF, Massey W. Scanning electron microscopy of incinerated teeth. Am J Forensic Med Pathol. (1987) 8:32–8. doi: 10.1097/00000433-198703000-00008 10.1097/00000433-198703000-00008 3578204 Lise M, Belluco C, Perera SP, Patel R, Thomas P, Ganguly A. Clinical correlations of alpha2,6-sialyltransferase expression in colorectal cancer patients. Hybridoma. (2000) 19:281–6. doi: 10.1089/027245700429828 10.1089/027245700429828 11001400 Sata T, Roth J, Zuber C, Stamm B, Heitz P. Expression of alpha 2,6-linked sialic acid residues in neoplastic but not in normal human colonic mucosa. A lectin-gold cytochemical study with Sambucus nigra and Maackia amurensis lectins. Am J Pathol. (1991) 139:1435–48. PMC1886452 1661075 van Kooyk Y, Rabinovich GA. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol. (2008) 9:593–601. doi: 10.1038/ni.f.203 10.1038/ni.f.203 18490910 Visser EA, Moons SJ, Timmermans SBPE, de Jong H, Boltje TJ, Büll C. Sialic acid O-acetylation: From biosynthesis to roles in health and disease. J Biol Chem. (2021) 297:100906. doi: 10.1016/j.jbc.2021.100906 10.1016/j.jbc.2021.100906 PMC8319020 34157283 Amon R, Reuven EM, Leviatan Ben-Arye S, Padler-Karavani V. Glycans in immune recognition and response. Carbohydr Res. (2014) 389:115–22. doi: 10.1016/j.carres.2014.02.004 10.1016/j.carres.2014.02.004 24680512 McEver RP. Selectin-carbohydrate interactions during inflammation and metastasis. Glycoconj J. (1997) 14:585–91. doi: 10.1023/A:1018584425879 10.1023/A:1018584425879 9298691 Munkley J, Scott E. Targeting aberrant sialylation to treat cancer. Medicines (Basel). (2019) 6. doi: 10.3390/medicines6040102 10.3390/medicines6040102 PMC6963943 31614918 Smith BAH, Bertozzi CR. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat Rev Drug Discovery. (2021) 20:217–43. doi: 10.1038/s41573-020-00093-1 10.1038/s41573-020-00093-1 PMC7812346 33462432 Mahoney TS, Weyrich AS, Dixon DA, McIntyre T, Prescott SM, Zimmerman GA. Cell adhesion regulates gene expression at translational checkpoints in human myeloid leukocytes. Proc Natl Acad Sci U.S.A. (2001) 98:10284–9. doi: 10.1073/pnas.181201398 10.1073/pnas.181201398 PMC56953 11517314 Natoni A, Macauley MS, O’Dwyer ME. Targeting selectins and their ligands in cancer. Front Oncol. (2016) 6:93. doi: 10.3389/fonc.2016.00093 10.3389/fonc.2016.00093 PMC4834419 27148485 McEver RP. Selectins: lectins that initiate cell adhesion under flow. Curr Opin Cell Biol. (2002) 14:581–6. doi: 10.1016/S0955-0674(02)00367-8 10.1016/S0955-0674(02)00367-8 12231353 Ley K. The role of selectins in inflammation and disease. Trends Mol Med. (2003) 9:263–8. doi: 10.1016/S1471-4914(03)00071-6 10.1016/S1471-4914(03)00071-6 12829015 Pearce OM, Laubli H. Sialic acids in cancer biology and immunity. Glycobiology. (2016) 26:111–28. doi: 10.1093/glycob/cwv097 10.1093/glycob/cwv097 26518624 Kansas GS. Selectins and their ligands: current concepts and controversies. Blood. (1996) 88:3259–87. doi: 10.1182/blood.V88.9.3259.bloodjournal8893259 10.1182/blood.V88.9.3259.bloodjournal8893259 8896391 Borsig L, Vlodavsky I, Ishai-Michaeli R, Torri G, Vismara E. Sulfated hexasaccharides attenuate metastasis by inhibition of P-selectin and heparanase. Neoplasia. (2011) 13:445–52. doi: 10.1593/neo.101734 10.1593/neo.101734 PMC3084621 21532885 Zak I, Lewandowska E, Gnyp W. Selectin glycoprotein ligands. Acta Biochim Pol. (2000) 47:393–412. doi: 10.18388/abp.2000_4019 10.18388/abp.2000_4019 11051204 Zhao S, Wang Z. Changes in heparan sulfate sulfotransferases and cell-surface heparan sulfate during SKM-1 cells granulocytic differentiation and A549 cells epithelial-mesenchymal transition. Glycoconj J. (2020) 37:151–64. doi: 10.1007/s10719-019-09903-0 10.1007/s10719-019-09903-0 31863309 McEver RP. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc Res. (2015) 107:331–9. doi: 10.1093/cvr/cvv154 10.1093/cvr/cvv154 PMC4592324 25994174 Esposito M, Mondal N, Greco TM, Wei Y, Spadazzi C, Lin SC, et al. . Bone vascular niche E-selectin induces mesenchymal-epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nat Cell Biol. (2019) 21:627–39. doi: 10.1038/s41556-019-0309-2 10.1038/s41556-019-0309-2 PMC6556210 30988423 Hauselmann I, Roblek M, Protsyuk D, Huck V, Knopfova L, Grässle S, et al. . Monocyte induction of E-selectin-mediated endothelial activation releases VE-cadherin junctions to promote tumor cell extravasation in the metastasis cascade. Cancer Res. (2016) 76:5302–12. doi: 10.1158/0008-5472.CAN-16-0784 10.1158/0008-5472.CAN-16-0784 PMC6322653 27488527 Huang J, Huang J, Zhang G. Insights into the role of sialylation in cancer metastasis, immunity, and therapeutic opportunity. Cancers (Basel). (2022) 14. doi: 10.3390/cancers14235840 10.3390/cancers14235840 PMC9737300 36497322 Smith BAH, Bertozzi CR. Author Correction: The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat Rev Drug Discovery. (2021) 20:244. doi: 10.1038/s41573-021-00160-1 10.1038/s41573-021-00160-1 PMC8095272 33558696 Kappelmayer J, Nagy B, Jr. The interaction of selectins and PSGL-1 as a key component in thrombus formation and cancer progression. BioMed Res Int. (2017) 2017:6138145. doi: 10.1155/2017/6138145 10.1155/2017/6138145 PMC5478826 28680883 Hoos A, Protsyuk D, Borsig L. Metastatic growth progression caused by PSGL-1-mediated recruitment of monocytes to metastatic sites. Cancer Res. (2014) 74:695–704. doi: 10.1158/0008-5472.CAN-13-0946 10.1158/0008-5472.CAN-13-0946 24322980 ChaChadi VB, Bhat G, Cheng PW. Glycosyltransferases involved in the synthesis of MUC-associated metastasis-promoting selectin ligands. Glycobiology. (2015) 25:963–75. doi: 10.1093/glycob/cwv030 10.1093/glycob/cwv030 PMC4518684 25972125 St Hill CA, Baharo-Hassan D, Farooqui M. C2-O-sLeX glycoproteins are E-selectin ligands that regulate invasion of human colon and hepatic carcinoma cells. PloS One. (2011) 6:e16281. doi: 10.1371/journal.pone.0016281 10.1371/journal.pone.0016281 PMC3023807 21283832 Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. (2020) 5:28. doi: 10.1038/s41392-020-0134-x 10.1038/s41392-020-0134-x PMC7067809 32296047 Lange T, Valentiner U, Wicklein D, Maar H, Labitzky V, Ahlers AK, et al. . Tumor cell E-selectin ligands determine partialefficacy of bortezomib on spontaneous lung metastasis formation of solid human tumors in vivo. Mol Ther. (2022) 30:1536–52. doi: 10.1016/j.ymthe.2022.01.017 10.1016/j.ymthe.2022.01.017 PMC9077315 35031433 Steeber DA, Campbell MA, Basit A, Ley K, Tedder TF. Optimal selectin-mediated rolling of leukocytes during inflammation in vivo requires intercellular adhesion molecule-1 expression. Proc Natl Acad Sci U.S.A. (1998) 95:7562–7. doi: 10.1073/pnas.95.13.7562 10.1073/pnas.95.13.7562 PMC22683 9636189 Norman KE, Moore KL, McEver RP, Ley K. Leukocyte rolling in vivo is mediated by P-selectin glycoprotein ligand-1. Blood. (1995) 86:4417–21. doi: 10.1182/blood.V86.12.4417.bloodjournal86124417 10.1182/blood.V86.12.4417.bloodjournal86124417 8541529 Gassmann P, Enns A, Haier J. Role of tumor cell adhesion and migration in organ-specific metastasis formation. Onkologie. (2004) 27:577–82. doi: 10.1159/000081343 10.1159/000081343 15591720 Gout S, Tremblay PL, Huot J. Selectins and selectin ligands in extravasation of cancer cells and organ selectivity of metastasis. Clin Exp Metastasis. (2008) 25:335–44. doi: 10.1007/s10585-007-9096-4 10.1007/s10585-007-9096-4 17891461 Sun H, Zhou Y, Jiang H, Xu. Elucidation of functional roles of sialic acids in cancer migration. Front Oncol. (2020) 10:401. doi: 10.3389/fonc.2020.00401 10.3389/fonc.2020.00401 PMC7137995 32296639 Lundblad A. Gunnar Blix and his discovery of sialic acids. Fascinating molecules in glycobiology. Ups J Med Sci. (2015) 120:104–12. doi: 10.3109/03009734.2015.1027429 10.3109/03009734.2015.1027429 PMC4463483 25921326 Tyagi W, Pandey V, Pokharel YR. Membrane linked RNA glycosylation as new trend to envision epi-transcriptome epoch. Cancer Gene Ther. (2023) 30:641–6. doi: 10.1038/s41417-022-00430-z 10.1038/s41417-022-00430-z 35136215 Schauer R. Chapter One - Exploration of the Sialic Acid World, in Advances in Carbohydrate Chemistry and Biochemistry. Baker DC, editor. Academic Press; (2018) p. 1–213. 2009: Cold Spring Harbor Press. PMC7112061 30509400 Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. . Essentials of glycobiology. 4th edition. (2009). Janbon G, Himmelreich U, Moyrand F, Improvisi L, Dromer F. Cas1p is a membrane protein necessary for the O-acetylation of the Cryptococcus neoformans capsular polysaccharide. Mol Microbiol. (2001) 42:453–67. doi: 10.1046/j.1365-2958.2001.02651.x 10.1046/j.1365-2958.2001.02651.x 11703667 Takematsu H, Diaz S, Stoddart A, Zhang Y, Varki A. Lysosomal and cytosolic sialic acid 9-O-acetylesterase activities can Be encoded by one gene via differential usage of a signal peptide-encoding exon at the N terminus. J Biol Chem. (1999) 274:25623–31. doi: 10.1074/jbc.274.36.25623 10.1074/jbc.274.36.25623 10464298 Gomes C, et al. . Expression of ST3GAL4 leads to SLe(x) expression and induces c-Met activation and an invasive phenotype in gastric carcinoma cells. PloS One. (2013) 8:e66737. doi: 10.1371/journal.pone.0066737 10.1371/journal.pone.0066737 PMC3682978 23799130 Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat Rev Nephrol. (2019) 15:346–66. doi: 10.1038/s41581-019-0129-4 10.1038/s41581-019-0129-4 PMC6590709 30858582 Pereira JL, Cavaco P, da Silva RC, Pacheco-Leyva I, Mereiter S, Pinto R, et al. . P-selectin glycoprotein ligand 1 promotes T cell lymphoma development and dissemination. Transl Oncol. (2021) 14:101125. doi: 10.1016/j.tranon.2021.101125 10.1016/j.tranon.2021.101125 PMC8188565 34090013 Dimitroff CJ, Descheny L, Trujillo N, Kim R, Nguyen V, Huang W, et al. . Identification of leukocyte E-selectin ligands, P-selectin glycoprotein ligand-1 and E-selectin ligand-1, on human metastatic prostate tumor cells. Cancer Res. (2005) 65:5750–60. doi: 10.1158/0008-5472.CAN-04-4653 10.1158/0008-5472.CAN-04-4653 PMC1472661 15994950 Kauffman K, Manfra D, Nowakowska D, Zafari M, Nguyen PA, Phennicie R, et al. . PSGL-1 blockade induces classical activation of human tumor-associated macrophages. Cancer Res Commun. (2023) 3:2182–94. doi: 10.1158/2767-9764.CRC-22-0513 10.1158/2767-9764.CRC-22-0513 PMC10601817 37819238 Izumi Y, Kawamura YJ, Irimura T. Carbohydrate antigens in carcinoma invasion and metastasis. Nihon Geka Gakkai Zasshi. (1996) 97:140–4. 8632742 Okamura N, Mori Y, Endo T, Ito E, Kudo R. Experimental studies on the cell adhesion molecule E-cadherin and in vitro invasion of endometrial carcinoma cell lines. Nihon Sanka Fujinka Gakkai Zasshi. (1996) 48:335–42. 8847459 Yeini E, Ofek P, Pozzi S, Albeck N, Ben-Shushan D, Tiram G, et al. . P-selectin axis plays a key role in microglia immunophenotype and glioblastoma progression. Nat Commun. (2021) 12:1912. doi: 10.1038/s41467-021-22186-0 10.1038/s41467-021-22186-0 PMC7997963 33771989 Trinchera M, Aronica A, Dall’Olio F. Selectin ligands sialyl-lewis a and sialyl-lewis x in gastrointestinal cancers. Biol (Basel). (2017) 6. doi: 10.3390/biology6010016 10.3390/biology6010016 PMC5372009 28241499 Chen SH, Dallas MR, Balzer EM, Konstantopoulos. Mucin 16 is a functional selectin ligand on pancreatic cancer cells. FASEB J. (2012) 26:1349–59. doi: 10.1096/fj.11-195669 10.1096/fj.11-195669 PMC3289508 22159147 Sakuma K, Aoki M, Kannagi R. Transcription factors c-Myc and CDX2 mediate E-selectin ligand expression in colon cancer cells undergoing EGF/bFGF-induced epithelial-mesenchymal transition. Proc Natl Acad Sci U.S.A. (2012) 109:7776–81. doi: 10.1073/pnas.1111135109 10.1073/pnas.1111135109 PMC3356678 22547830 Flate E, Stalvey JR. Motility of select ovarian cancer cell lines: effect of extra-cellular matrix proteins and the involvement of PAK2. Int J Oncol. (2014) 45:1401–11. doi: 10.3892/ijo.2014.2553 10.3892/ijo.2014.2553 PMC4151804 25050916 Guo X, Hutcheon AE, Zieske JD. TAT-mediated protein transduction into human corneal epithelial cells: p15(INK4b) inhibits cell proliferation and stimulates cell migration. Invest Ophthalmol Vis Sci. (2004) 45:1804–11. doi: 10.1167/iovs.03-1164 10.1167/iovs.03-1164 15161843 Sharma GD, He J, Bazan HE. p38 and ERK1/2 coordinate cellular migration and proliferation in epithelial wound healing: evidence of cross-talk activation between MAP kinase cascades. J Biol Chem. (2003) 278:21989–97. doi: 10.1074/jbc.M302650200 10.1074/jbc.M302650200 12663671 Zagon IS, Sassani JW, McLaughlin PJ. Cellular dynamics of corneal wound re-epithelialization in the rat. II. DNA synthesis of the ocular surface epithelium following wounding. Brain Res. (1999) 839:243–52. doi: 10.1016/S0006-8993(99)01722-9 10.1016/S0006-8993(99)01722-9 10519047 Chung EH, Hutcheon AE, Joyce NC, Zieske JD. Synchronization of the G1/S transition in response to corneal debridement. Invest Ophthalmol Vis Sci. (1999) 40:1952–8. 10440248 39691215 2024 12 18 1860-5397 20 2024 Beilstein journal of organic chemistry Beilstein J Org Chem Non-covalent organocatalyzed enantioselective cyclization reactions of α,β-unsaturated imines. 3221 3255 3221-3255 10.3762/bjoc.20.268 Asymmetric cycloaddition is a straightforward strategy which enables the synthesis of structurally distinct cyclic derivatives which are difficult to access by other methodologies, using an efficient and atom-economical path from simple precursors. In recent years several asymmetric catalytic cyclization strategies have been accomplished for the construction of N -heterocycles using various catalytic systems such as chiral metal catalysts, chiral Lewis acids or chiral organocatalysts. This review presents an overview of the recent advances in enantioselective cyclization reactions of 1-azadienes catalyzed by non-covalent organocatalysts. Copyright © 2024, Torres-Oya and Zurro. Torres-Oya Sergio S 0000-0002-1003-519X Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (IRYCIS), 28805 Madrid, Spain. https://ror.org/04pmn0e78 https://www.isni.org/isni/0000000419370239 Zurro Mercedes M 0000-0003-1222-7926 Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (IRYCIS), 28805 Madrid, Spain. https://ror.org/04pmn0e78 https://www.isni.org/isni/0000000419370239 eng Journal Article Review 2024 12 10 Germany Beilstein J Org Chem 101250746 1860-5397 N-heterocycles asymmetric organocatalysis cyclization inverse electron demand aza-Diels–Alder reaction α,β-unsaturated imines 2024 8 10 2024 11 22 2024 12 18 11 34 2024 12 18 11 33 2024 12 18 4 16 2024 12 10 epublish 39691215 PMC11650568 10.3762/bjoc.20.268 Alvarez‐Builla J, Vaquero J J, Barluenga J, editors. Modern Heterocyclic Chemistry. Weinheim, Germany: Wiley-VCH; 2011. 10.1002/9783527637737 Joule J A, Mills K, Smith G F. Heterocyclic Chemistry. London, UK: CRC Press; 2020. 10.1201/9781003072850 Shimizu M, Hachiya I, Mizota I. Chem Commun. 2009:874–889. doi: 10.1039/b814930e. 10.1039/b814930e 19214305 Zhao C, Gao R, Ma W, Li M, Li Y, Zhang Q, Guan W, Fu J. Nat Commun. 2024;15:4329. doi: 10.1038/s41467-024-48737-9. 10.1038/s41467-024-48737-9 PMC11109338 38773128 Gothelf K V, Jørgensen K A. Chem Rev. 1998;98:863–910. doi: 10.1021/cr970324e. 10.1021/cr970324e 11848917 Yet L. Chem Rev. 2000;100:2963–3008. doi: 10.1021/cr990407q. 10.1021/cr990407q 11749312 Pandey G, Banerjee P, Gadre S R. Chem Rev. 2006;106:4484–4517. doi: 10.1021/cr050011g. 10.1021/cr050011g 17091927 Goudedranche S, Raimondi W, Bugaut X, Constantieux T, Bonne D, Rodriguez Jean J. Synthesis. 2013;45:1909–1930. doi: 10.1055/s-0033-1338484. 10.1055/s-0033-1338484 Held F E, Tsogoeva S B. Catal Sci Technol. 2016;6:645–667. doi: 10.1039/c5cy01894c. 10.1039/c5cy01894c Hayashi Y. Cycloaddition Reactions in Organic Synthesis. Weinheim, Germany: Wiley-VCH; 2001. Catalytic Asymmetric Diels–Alder Reactions; pp. 5–55. 10.1002/3527600256.ch1 Kagan H B, Riant O. Chem Rev. 1992;92:1007–1019. doi: 10.1021/cr00013a013. 10.1021/cr00013a013 Xie M, Lin L, Feng X. Chem Rec. 2017;17:1184–1202. doi: 10.1002/tcr.201700006. 10.1002/tcr.201700006 28508470 Laina‐Martín V, Fernández‐Salas J A, Alemán J. Chem – Eur J. 2021;27(49):12509–12520. doi: 10.1002/chem.202101696. 10.1002/chem.202101696 PMC8456916 34132427 Skrzyńska A, Frankowski S, Albrecht Ł. Asian J Org Chem. 2020;9(11):1688–1700. doi: 10.1002/ajoc.202000332. 10.1002/ajoc.202000332 Wheeler S E, Seguin T J, Guan Y, Doney A C. Acc Chem Res. 2016;49:1061–1069. doi: 10.1021/acs.accounts.6b00096. 10.1021/acs.accounts.6b00096 27110641 Saha S K, Bera A, Singh S, Rana N K. Eur J Org Chem. 2023;26:e202201470. doi: 10.1002/ejoc.202201470. 10.1002/ejoc.202201470 Zurro M, Maestro A. ChemCatChem. 2023;15:e202300500. doi: 10.1002/cctc.202300500. 10.1002/cctc.202300500 Liao H-H, Miñoza S, Lee S-C, Rueping M. Chem – Eur J. 2022;28:e202201112. doi: 10.1002/chem.202201112. 10.1002/chem.202201112 35652815 Mukherjee S, Yang J W, Hoffmann S, List B. Chem Rev. 2007;107:5471–5569. doi: 10.1021/cr0684016. 10.1021/cr0684016 18072803 MacMillan D W C. Nature. 2008;455:304–308. doi: 10.1038/nature07367. 10.1038/nature07367 18800128 Enders D, Niemeier O, Henseler A. Chem Rev. 2007;107:5606–5655. doi: 10.1021/cr068372z. 10.1021/cr068372z 17956132 Doyle A G, Jacobsen E N. Chem Rev. 2007;107:5713–5743. doi: 10.1021/cr068373r. 10.1021/cr068373r 18072808 Erkkilä A, Majander I, Pihko P M. Chem Rev. 2007;107:5416–5470. doi: 10.1021/cr068388p. 10.1021/cr068388p 18072802 Jiang X, Shi X, Wang S, Sun T, Cao Y, Wang R. Angew Chem, Int Ed. 2012;51:2084–2087. doi: 10.1002/anie.201107716. 10.1002/anie.201107716 22271371 Du D, Xu Q, Li X-G, Shi M. Chem – Eur J. 2016;22:4733–4737. doi: 10.1002/chem.201600497. 10.1002/chem.201600497 26853427 Gu Z, Wu B, Jiang G-F, Zhou Y-G. Chin J Chem. 2018;36:1130–1134. doi: 10.1002/cjoc.201800330. 10.1002/cjoc.201800330 Ren X-R, Lin J-B, Hu X-Q, Xu P-F. Org Chem Front. 2019;6:2280–2283. doi: 10.1039/c9qo00357f. 10.1039/c9qo00357f Wang C-S, Li T-Z, Cheng Y-C, Zhou J, Mei G-J, Shi F. J Org Chem. 2019;84:3214–3222. doi: 10.1021/acs.joc.8b03004. 10.1021/acs.joc.8b03004 30777434 Li X, Yan J, Qin J, Lin S, Chen W, Zhan R, Huang H. J Org Chem. 2019;84:8035–8045. doi: 10.1021/acs.joc.9b00911. 10.1021/acs.joc.9b00911 31188599 Ni Q, Wang X, Xu F, Chen X, Song X. Chem Commun. 2020;56:3155–3158. doi: 10.1039/d0cc00736f. 10.1039/d0cc00736f 32064486 Frankowski S, Skrzyńska A, Sieroń L, Albrecht Ł. Adv Synth Catal. 2020;362:2658–2665. doi: 10.1002/adsc.202000197. 10.1002/adsc.202000197 Chang L, Zhu G-Y, Yang T, Zhao X-L, Shi M, Zhao M-X. Org Biomol Chem. 2021;19:3687–3697. doi: 10.1039/d1ob00115a. 10.1039/d1ob00115a 33908569 Laina-Martín V, Humbrías-Martín J, Mas-Ballesté R, Fernández-Salas J A, Alemán J. ACS Catal. 2021;11:12133–12145. doi: 10.1021/acscatal.1c03390. 10.1021/acscatal.1c03390 PMC8491166 34621594 Yang T, Yan S, Yu Z-J, Zhao X-L, Shi M, Zhao M-X. Eur J Org Chem. 2023;26:e202300275. doi: 10.1002/ejoc.202300275. 10.1002/ejoc.202300275 Song C E, editor. Cinchona Alkaloids in Synthesis and Catalysis. Weinheim, Germany: Wiley-VCH; 2009. 10.1002/9783527628179 Li C, Jiang K, Chen Y-C. Molecules. 2015;20:13642–13658. doi: 10.3390/molecules200813642. 10.3390/molecules200813642 PMC6332167 26225947 Yu L, Cheng Y, Qi F, Li R, Li P. Org Chem Front. 2017;4:1336–1340. doi: 10.1039/c6qo00832a. 10.1039/c6qo00832a Varlet T, Masson G. Chem Commun. 2021;57:4089–4105. doi: 10.1039/d1cc00590a. 10.1039/d1cc00590a 33908458 Maji R, Mallojjala S C, Wheeler S E. Chem Soc Rev. 2018;47:1142–1158. doi: 10.1039/c6cs00475j. 10.1039/c6cs00475j 29355873 He L, Laurent G, Retailleau P, Folléas B, Brayer J-L, Masson G. Angew Chem, Int Ed. 2013;52:11088–11091. doi: 10.1002/anie.201304969. 10.1002/anie.201304969 24038965 Jarrige L, Glavač D, Levitre G, Retailleau P, Bernadat G, Neuville L, Masson G. Chem Sci. 2019;10:3765–3769. doi: 10.1039/c8sc05581e. 10.1039/c8sc05581e PMC6461124 31015920 He S, Gu H, He Y-P, Yang X. Org Lett. 2020;22:5633–5639. doi: 10.1021/acs.orglett.0c01994. 10.1021/acs.orglett.0c01994 32603121 Mei G-J, Tang X, Tasdan Y, Lu Y. Angew Chem, Int Ed. 2020;59:648–652. doi: 10.1002/anie.201911686. 10.1002/anie.201911686 31592562 Chen K-W, Wang D-D, Liu S-J, Wang X, Zhang Y-C, Tian Y-M, Wu Q, Shi F. J Org Chem. 2021;86:10427–10439. doi: 10.1021/acs.joc.1c01105. 10.1021/acs.joc.1c01105 34313431 Koay W L, Mei G-J, Lu Y. Org Chem Front. 2021;8:968–974. doi: 10.1039/d0qo01236j. 10.1039/d0qo01236j Ma W-Y, Montinho‐Inacio E, Iorga B I, Retailleau P, Moreau X, Neuville L, Masson G. Adv Synth Catal. 2022;364(10):1708–1715. doi: 10.1002/adsc.202200161. 10.1002/adsc.202200161 Miao Y-H, Hua Y-Z, Gao H-J, Mo N-N, Wang M-C, Mei G-J. Chem Commun. 2022;58:7515–7518. doi: 10.1039/d2cc02458f. 10.1039/d2cc02458f 35687078 Han T-J, Zhang Z-X, Wang M-C, Xu L-P, Mei G-J. Angew Chem, Int Ed. 2022;61:e202207517. doi: 10.1002/anie.202207517. 10.1002/anie.202207517 35727301 Mo N-N, Miao Y-H, Xiao X, Hua Y-Z, Wang M-C, Huang L, Mei G-J. Chem Commun. 2023;59:5902–5905. doi: 10.1039/d3cc01194a. 10.1039/d3cc01194a 37097750 Zhou W-J, Yu X, Chen C, Lan W, Zhan G, Zhou J, Liu Q, Huang W, Yang Q-Q. J Org Chem. 2023;88:13427–13439. doi: 10.1021/acs.joc.3c00663. 10.1021/acs.joc.3c00663 37750476 39684664 2024 12 17 2024 12 17 1422-0067 25 23 2024 Dec 02 International journal of molecular sciences Int J Mol Sci Synthesis of Bis(isodecyl Terephthalate) from Waste Poly(ethylene Terephthalate) Catalyzed by Lewis Acid Catalysts. 12953 10.3390/ijms252312953 Increasing plastic waste generation has become a pressing environmental problem. One of the most produced waste plastics originates from post-consumer packaging, of which PET constitutes a significant portion. Despite increasing recycling rates, its accumulation has created a need for the development of new recycling methods that can further expand the possibilities of recycling. In this paper, we present the application of Lewis acid catalysts for the depolymerization of PET waste. The obtained results show the formation of diisodecyl terephthalate (DIDTP), which is used as a PVC plasticizer. For this purpose, several Lewis acid catalysts were tested, including tin, cobalt, manganese, zirconium, zinc, and calcium derivatives, alongside zinc acetate and potassium hydroxide, which were used as reference catalysts. Our results show that tin (II) oxalate is the most effective catalyst, and it was then used to synthesize two application samples (crude and purified). The physicochemical properties of PVC mixtures with the obtained samples were determined and compared to commercial plasticizers, where both plasticizers had similar plasticizing properties to PVC plasticization. Muszyński Marcin M Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, PhD School, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland. Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland. Nowicki Janusz J Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland. Krasuska Agata A Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland. Nowakowska-Bogdan Ewa E 0000-0002-9246-4114 Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland. Bartoszewicz Maria M 0000-0002-9366-0520 Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland. Woszczyński Piotr P 0000-0002-3786-5724 Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland. Zygadło Mateusz M Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Chemistry Students Research Society ks. M. Strzody 9, 44-100 Gliwice, Poland. Dudek Gabriela G 0000-0002-6182-2652 Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland. eng 04/040/RGJ24/0277 Silesian University of Technology 32/014/SDU/10-22 Silesian University of Technology 31/010/SDU20/0006-10 Silesian University of Technology DWD/5/0567/2021 Ministry of Science and Higher Education of Poland BC/23/09 Łukasiewicz Research Network-Institute of Heavy Organic Synthesis "Blachownia" Journal Article 2024 12 02 Switzerland Int J Mol Sci 101092791 1422-0067 0 Polyethylene Terephthalates 0 Lewis Acids 0 Phthalic Acids 0 Plasticizers IM Catalysis Polyethylene Terephthalates chemistry Lewis Acids chemistry Phthalic Acids chemistry Plasticizers chemistry Recycling PET alcoholysis recycling The authors declare no conflicts of interest. 2024 11 8 2024 11 27 2024 11 27 2024 12 17 11 50 2024 12 17 11 49 2024 12 17 1 14 2024 12 2 epublish 39684664 10.3390/ijms252312953 ijms252312953 PMC11641123 Diao J., Hu Y., Tian Y., Carr R., Moon T.S. Upcycling of Poly(Ethylene Terephthalate) to Produce High-Value Bio-Products. Cell Rep. 2023;42:111908. doi: 10.1016/j.celrep.2022.111908. 10.1016/j.celrep.2022.111908 36640302 Browne M.A., Crump P., Niven S.J., Teuten E., Tonkin A., Galloway T., Thompson R. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environ. Sci. Technol. 2011;45:9175–9179. doi: 10.1021/es201811s. 10.1021/es201811s 21894925 Barnes D.K.A., Galgani F., Thompson R.C., Barlaz M. Accumulation and Fragmentation of Plastic Debris in Global Environments. Philos. Trans. R. Soc. B Biol. Sci. 2009;364:1985–1998. doi: 10.1098/rstb.2008.0205. 10.1098/rstb.2008.0205 PMC2873009 19528051 Smith R., Oliver C., Williams D.F. The Enzymatic Degradation of Polymersin Vitro. J. Biomed. Mater. Res. 1987;21:991–1003. doi: 10.1002/jbm.820210805. 10.1002/jbm.820210805 2958461 Zhang J., Wang X., Gong J., Gu Z. A Study on the Biodegradability of Polyethylene Terephthalate Fiber and Diethylene Glycol Terephthalate. J. Appl. Polym. Sci. 2004;93:1089–1096. doi: 10.1002/app.20556. 10.1002/app.20556 Muszyński M., Nowicki J., Zygadło M., Dudek G. Comparsion of Catalyst Effectiveness in Different Chemical Depolymerization Methods of Poly(Ethylene Terephthalate) Molecules. 2023;28:6385. doi: 10.3390/molecules28176385. 10.3390/molecules28176385 PMC10489063 37687213 Hopewell J., Dvorak R., Kosior E. Plastics Recycling: Challenges and Opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009;364:2115–2126. doi: 10.1098/rstb.2008.0311. 10.1098/rstb.2008.0311 PMC2873020 19528059 Ragaert K., Delva L., Van Geem K. Mechanical and Chemical Recycling of Solid Plastic Waste. Waste Manag. 2017;69:24–58. doi: 10.1016/j.wasman.2017.07.044. 10.1016/j.wasman.2017.07.044 28823699 de Marco I., Caballero B., Torres A., Laresgoiti M.F., Chomón M.J., Cabrero M.A. Recycling Polymeric Wastes by Means of Pyrolysis. J. Chem. Technol. Biotechnol. 2002;77:817–824. doi: 10.1002/jctb.636. 10.1002/jctb.636 Lopez-Urionabarrenechea A., de Marco I., Caballero B.M., Laresgoiti M.F., Adrados A. Catalytic Stepwise Pyrolysis of Packaging Plastic Waste. J. Anal. Appl. Pyrolysis. 2012;96:54–62. doi: 10.1016/j.jaap.2012.03.004. 10.1016/j.jaap.2012.03.004 Ahmadinia E., Zargar M., Karim M.R., Abdelaziz M., Ahmadinia E. Performance Evaluation of Utilization of Waste Polyethylene Terephthalate (PET) in Stone Mastic Asphalt. Constr. Build Mater. 2012;36:984–989. doi: 10.1016/j.conbuildmat.2012.06.015. 10.1016/j.conbuildmat.2012.06.015 Leng Z., Padhan R.K., Sreeram A. Production of a Sustainable Paving Material through Chemical Recycling of Waste PET into Crumb Rubber Modified Asphalt. J. Clean Prod. 2018;180:682–688. doi: 10.1016/j.jclepro.2018.01.171. 10.1016/j.jclepro.2018.01.171 Leng Z., Sreeram A., Padhan R.K., Tan Z. Value-Added Application of Waste PET Based Additives in Bituminous Mixtures Containing High Percentage of Reclaimed Asphalt Pavement (RAP) J. Clean Prod. 2018;196:615–625. doi: 10.1016/j.jclepro.2018.06.119. 10.1016/j.jclepro.2018.06.119 Usman I.U., Kunlin M. Influence of Polyethylene Terephthalate (PET) Utilization on the Engineering Properties of Asphalt Mixtures: A Review. Constr. Build Mater. 2024;411:134439. doi: 10.1016/j.conbuildmat.2023.134439. 10.1016/j.conbuildmat.2023.134439 Kenny S.T., Runic J.N., Kaminsky W., Woods T., Babu R.P., Keely C.M., Blau W., O’Connor K.E. Up-Cycling of PET (Polyethylene Terephthalate) to the Biodegradable Plastic PHA (Polyhydroxyalkanoate) Environ. Sci. Technol. 2008;42:7696–7701. doi: 10.1021/es801010e. 10.1021/es801010e 18983095 Du S., Valla J.A., Parnas R.S., Bollas G.M. Conversion of Polyethylene Terephthalate Based Waste Carpet to Benzene-Rich Oils through Thermal, Catalytic, and Catalytic Steam Pyrolysis. ACS Sustain. Chem. Eng. 2016;4:2852–2860. doi: 10.1021/acssuschemeng.6b00450. 10.1021/acssuschemeng.6b00450 Paszun D., Spychaj T. Chemical Recycling of Poly(Ethylene Terephthalate) Ind. Eng. Chem. Res. 1997;36:1373–1383. doi: 10.1021/ie960563c. 10.1021/ie960563c Karayannidis G.P., Achilias D.S. Chemical Recycling of Poly(Ethylene Terephthalate) Macromol Mater Eng. 2007;292:128–146. doi: 10.1002/mame.200600341. 10.1002/mame.200600341 Sinha V., Patel M.R., Patel J.V. Pet Waste Management by Chemical Recycling: A Review. J. Polym. Environ. 2010;18:8–25. doi: 10.1007/s10924-008-0106-7. 10.1007/s10924-008-0106-7 Shojaei B., Abtahi M., Najafi M. Chemical Recycling of PET: A Stepping-stone toward Sustainability. Polym. Adv. Technol. 2020;31:2912–2938. doi: 10.1002/pat.5023. 10.1002/pat.5023 Samak N.A., Jia Y., Sharshar M.M., Mu T., Yang M., Peh S., Xing J. Recent Advances in Biocatalysts Engineering for Polyethylene Terephthalate Plastic Waste Green Recycling. Environ. Int. 2020;145:106144. doi: 10.1016/j.envint.2020.106144. 10.1016/j.envint.2020.106144 32987219 Cao F., Wang L., Zheng R., Guo L., Chen Y., Qian X. Research and Progress of Chemical Depolymerization of Waste PET and High-Value Application of Its Depolymerization Products. RSC Adv. 2022;12:31564–31576. doi: 10.1039/D2RA06499E. 10.1039/D2RA06499E PMC9632252 36380916 Khalaf H.I., Hasan O.A. Effect of Quaternary Ammonium Salt as a Phase Transfer Catalyst for the Microwave Depolymerization of Polyethylene Terephthalate Waste Bottles. Chem. Eng. J. 2012;192:45–48. doi: 10.1016/j.cej.2012.03.081. 10.1016/j.cej.2012.03.081 Wang Y., Wang H., Chen H., Liu H. Towards Recycling Purpose: Converting PET Plastic Waste Back to Terephthalic Acid Using PH-Responsive Phase Transfer Catalyst. Chin. J. Chem. Eng. 2022;51:53–60. doi: 10.1016/j.cjche.2021.10.028. 10.1016/j.cjche.2021.10.028 Zhang L., Gao J., Zou J., Yi F. Hydrolysis of Poly(Ethylene Terephthalate) Waste Bottles in the Presence of Dual Functional Phase Transfer Catalysts. J. Appl. Polym. Sci. 2013;130:2790–2795. doi: 10.1002/app.39497. 10.1002/app.39497 Singh S., Sharma S., Umar A., Mehta S.K., Bhatti M.S., Kansal S.K. Recycling of Waste Poly(Ethylene Terephthalate) Bottles by Alkaline Hydrolysis and Recovery of Pure Nanospindle-Shaped Terephthalic Acid. J. Nanosci. Nanotechnol. 2018;18:5804–5809. doi: 10.1166/jnn.2018.15363. 10.1166/jnn.2018.15363 29458644 Štrukil V. Highly Efficient Solid-State Hydrolysis of Waste Polyethylene Terephthalate by Mechanochemical Milling and Vapor-Assisted Aging. ChemSusChem. 2021;14:330–338. doi: 10.1002/cssc.202002124. 10.1002/cssc.202002124 32986929 Bhogle C.S., Pandit A.B. Ultrasound-Assisted Alkaline Hydrolysis of Waste Poly(Ethylene Terephthalate) in Aqueous and Non-Aqueous Media at Low Temperature. Indian Chem. Eng. 2018;60:122–140. doi: 10.1080/00194506.2017.1310634. 10.1080/00194506.2017.1310634 Yang W., Wang J., Jiao L., Song Y., Li C., Hu C. Easily Recoverable and Reusable p -Toluenesulfonic Acid for Faster Hydrolysis of Waste Polyethylene Terephthalate. Green Chem. 2022;24:1362–1372. doi: 10.1039/D1GC04567A. 10.1039/D1GC04567A Li X.-K., Lu H., Guo W.-Z., Cao G.-P., Liu H.-L., Shi Y.-H. Reaction Kinetics and Mechanism of Catalyzed Hydrolysis of Waste PET Using Solid Acid Catalyst in Supercritical CO 2. AIChE J. 2015;61:200–214. doi: 10.1002/aic.14632. 10.1002/aic.14632 Guo W.-Z., Lu H., Li X.-K., Cao G.-P. Tungsten-Promoted Titania as Solid Acid for Catalytic Hydrolysis of Waste Bottle PET in Supercritical CO 2. RSC Adv. 2016;6:43171–43184. doi: 10.1039/C6RA06298A. 10.1039/C6RA06298A Yang W., Liu R., Li C., Song Y., Hu C. Hydrolysis of Waste Polyethylene Terephthalate Catalyzed by Easily Recyclable Terephthalic Acid. Waste Manag. 2021;135:267–274. doi: 10.1016/j.wasman.2021.09.009. 10.1016/j.wasman.2021.09.009 34555688 Ügdüler S., Van Geem K.M., Denolf R., Roosen M., Mys N., Ragaert K., De Meester S. Towards Closed-Loop Recycling of Multilayer and Coloured PET Plastic Waste by Alkaline Hydrolysis. Green Chem. 2020;22:5376–5394. doi: 10.1039/D0GC00894J. 10.1039/D0GC00894J Liu B., Lu X., Ju Z., Sun P., Xin J., Yao X., Zhou Q., Zhang S. Ultrafast Homogeneous Glycolysis of Waste Polyethylene Terephthalate via a Dissolution-Degradation Strategy. Ind. Eng. Chem. Res. 2018;57:16239–16245. doi: 10.1021/acs.iecr.8b03854. 10.1021/acs.iecr.8b03854 Ghosal K., Nayak C. Recent Advances in Chemical Recycling of Polyethylene Terephthalate Waste into Value Added Products for Sustainable Coating Solutions—Hope vs. Hype. Mater. Adv. 2022;3:1974–1992. doi: 10.1039/D1MA01112J. 10.1039/D1MA01112J Hu Y., Wang Y., Zhang X., Qian J., Xing X., Wang X. Synthesis of Poly(Ethylene Terephthalate) Based on Glycolysis of Waste PET Fiber. J. Macromol.Sci. Part A. 2020;57:430–438. doi: 10.1080/10601325.2019.1709498. 10.1080/10601325.2019.1709498 Moncada J., Dadmun M.D. The Structural Evolution of Poly(Ethylene Terephthalate) Oligomers Produced via Glycolysis Depolymerization. J. Mater. Chem. A Mater. 2023;11:4679–4690. doi: 10.1039/D2TA07467B. 10.1039/D2TA07467B Deng L., Li R., Chen Y., Wang J., Song H. New Effective Catalysts for Glycolysis of Polyethylene Terephthalate Waste: Tropine and Tropine-Zinc Acetate Complex. J. Mol. Liq. 2021;334:116419. doi: 10.1016/j.molliq.2021.116419. 10.1016/j.molliq.2021.116419 Esquer R., García J.J. Metal-Catalysed Poly(Ethylene) Terephthalate and Polyurethane Degradations by Glycolysis. J. Organomet. Chem. 2019;902:120972. doi: 10.1016/j.jorganchem.2019.120972. 10.1016/j.jorganchem.2019.120972 Lei D., Sun X.-L., Hu S., Cheng H., Chen Q., Qian Q., Xiao Q., Cao C., Xiao L., Huang B. Rapid Glycolysis of Waste Polyethylene Terephthalate Fibers via a Stepwise Feeding Process. Ind. Eng. Chem. Res. 2022;61:4794–4802. doi: 10.1021/acs.iecr.1c05022. 10.1021/acs.iecr.1c05022 Son S.G., Jin S.B., Kim S.J., Park H.J., Shin J., Ryu T., Jeong J.-M., Choi B.G. Exfoliated Manganese Oxide Nanosheets as Highly Active Catalysts for Glycolysis of Polyethylene Terephthalate. FlatChem. 2022;36:100430. doi: 10.1016/j.flatc.2022.100430. 10.1016/j.flatc.2022.100430 Wang T., Zheng Y., Yu G., Chen X. Glycolysis of Polyethylene Terephthalate: Magnetic Nanoparticle CoFe2O4 Catalyst Modified Using Ionic Liquid as Surfactant. Eur. Polym. J. 2021;155:110590. doi: 10.1016/j.eurpolymj.2021.110590. 10.1016/j.eurpolymj.2021.110590 Guo Z., Adolfsson E., Tam P.L. Nanostructured Micro Particles as a Low-Cost and Sustainable Catalyst in the Recycling of PET Fiber Waste by the Glycolysis Method. Waste Manag. 2021;126:559–566. doi: 10.1016/j.wasman.2021.03.049. 10.1016/j.wasman.2021.03.049 33862509 Putisompon S., Yunita I., Sugiyarto K.H., Somsook E. Low-Cost Catalyst for Glycolysis of Polyethylene Terephthalate (PET) Key. Eng. Mater. 2019;824:225–230. doi: 10.4028/www.scientific.net/KEM.824.225. 10.4028/www.scientific.net/KEM.824.225 Zangana K.H., Fernandez A., Holmes J.D. Simplified, Fast, and Efficient Microwave Assisted Chemical Recycling of Poly (Ethylene Terephthalate) Waste. Mater. Today Commun. 2022;33:104588. doi: 10.1016/j.mtcomm.2022.104588. 10.1016/j.mtcomm.2022.104588 Fang P., Liu B., Xu J., Zhou Q., Zhang S., Ma J., Lu X. High-Efficiency Glycolysis of Poly(Ethylene Terephthalate) by Sandwich-Structure Polyoxometalate Catalyst with Two Active Sites. Polym. Degrad. Stab. 2018;156:22–31. doi: 10.1016/j.polymdegradstab.2018.07.004. 10.1016/j.polymdegradstab.2018.07.004 Shuangjun C., Weihe S., Haidong C., Hao Z., Zhenwei Z., Chaonan F. Glycolysis of Poly(Ethylene Terephthalate) Waste Catalyzed by Mixed Lewis Acidic Ionic Liquids. J. Therm. Anal. Calorim. 2021;143:3489–3497. doi: 10.1007/s10973-020-10331-8. 10.1007/s10973-020-10331-8 Cano I., Martin C., Fernandes J.A., Lodge R.W., Dupont J., Casado-Carmona F.A., Lucena R., Cardenas S., Sans V., de Pedro I. Paramagnetic Ionic Liquid-Coated SiO2@Fe3O4 Nanoparticles—The next Generation of Magnetically Recoverable Nanocatalysts Applied in the Glycolysis of PET. Appl. Catal. B. 2020;260:118110. doi: 10.1016/j.apcatb.2019.118110. 10.1016/j.apcatb.2019.118110 Najafi-Shoa S., Barikani M., Ehsani M., Ghaffari M. Cobalt-Based Ionic Liquid Grafted on Graphene as a Heterogeneous Catalyst for Poly (Ethylene Terephthalate) Glycolysis. Polym. Degrad. Stab. 2021;192:109691. doi: 10.1016/j.polymdegradstab.2021.109691. 10.1016/j.polymdegradstab.2021.109691 Kim B.-K., Hwang G.-C., Bae S.-Y., Yi S.-C., Kumazawa H. Depolymerization of Polyethyleneterephthalate in Supercritical Methanol. J. Appl. Polym. Sci. 2001;81:2102–2108. doi: 10.1002/app.1645. 10.1002/app.1645 Mishra S., Goje A. Kinetic and Thermodynamic Study of Methanolysis of Poly(Ethylene Terephthalate) Waste Powder. Polym. Int. 2003;52:337–342. doi: 10.1002/pi.1147. 10.1002/pi.1147 Siddiqui M.N., Redhwi H.H., Achilias D.S. Recycling of Poly(Ethylene Terephthalate) Waste through Methanolic Pyrolysis in a Microwave Reactor. J. Anal. Appl. Pyrolysis. 2012;98:214–220. doi: 10.1016/j.jaap.2012.09.007. 10.1016/j.jaap.2012.09.007 Carné Sánchez A., Collinson S.R. The Selective Recycling of Mixed Plastic Waste of Polylactic Acid and Polyethylene Terephthalate by Control of Process Conditions. Eur. Polym. J. 2011;47:1970–1976. doi: 10.1016/j.eurpolymj.2011.07.013. 10.1016/j.eurpolymj.2011.07.013 Hofmann M., Sundermeier J., Alberti C., Enthaler S. Zinc(II) Acetate Catalyzed Depolymerization of Poly(Ethylene Terephthalate) ChemistrySelect. 2020;5:10010–10014. doi: 10.1002/slct.202002260. 10.1002/slct.202002260 Pham D.D., Cho J. Low-Energy Catalytic Methanolysis of Poly(Ethyleneterephthalate) Green Chem. 2021;23:511–525. doi: 10.1039/D0GC03536J. 10.1039/D0GC03536J Tang S., Li F., Liu J., Guo B., Tian Z., Lv J. Calcined Sodium Silicate as Solid Base Catalyst for Alcoholysis of Poly(Ethylene Terephthalate) J. Chem. Technol. Biotechnol. 2022;97:1305–1314. doi: 10.1002/jctb.7025. 10.1002/jctb.7025 Tang H., Li N., Li G., Wang A., Cong Y., Xu G., Wang X., Zhang T. Synthesis of Gasoline and Jet Fuel Range Cycloalkanes and Aromatics from Poly(Ethylene Terephthalate) Waste. Green Chem. 2019;21:2709–2719. doi: 10.1039/C9GC00571D. 10.1039/C9GC00571D Rodrigues Fernandes J., Pereira Amaro L., Curti Muniz E., Favaro S.L., Radovanovic E. PET Depolimerization in Supercritical Ethanol Conditions Catalysed by Nanoparticles of Metal Oxides. J. Supercrit. Fluids. 2020;158:104715. doi: 10.1016/j.supflu.2019.104715. 10.1016/j.supflu.2019.104715 Yang Y., Chen F., Shen T., Pariatamby A., Wen X., Yan M., Kanchanatip E. Catalytic Depolymerization of Waste Polyethylene Terephthalate Plastic in Supercritical Ethanol by ZnO/γ-Al2O3 Catalyst. Process Saf. Environ. Prot. 2023;173:881–892. doi: 10.1016/j.psep.2023.04.001. 10.1016/j.psep.2023.04.001 Lozano-Martinez P., Torres-Zapata T., Martin-Sanchez N. Directing Depolymerization of PET with Subcritical and Supercritical Ethanol to Different Monomers through Changes in Operation Conditions. ACS Sustain. Chem. Eng. 2021;9:9846–9853. doi: 10.1021/acssuschemeng.1c02489. 10.1021/acssuschemeng.1c02489 Yan M., Yang Y., Shen T., Grisdanurak N., Pariatamby A., Khalid M., Hantoko D., Wibowo H. Effect of Operating Parameters on Monomer Production from Depolymerization of Waste Polyethylene Terephthalate in Supercritical Ethanol. Process Saf. Environ. Prot. 2023;169:212–219. doi: 10.1016/j.psep.2022.11.011. 10.1016/j.psep.2022.11.011 Liu S., Wang Z., Li L., Yu S., Xie C., Liu F. Butanol Alcoholysis Reaction of Polyethylene Terephthalate Using Acidic Ionic Liquid as Catalyst. J. Appl. Polym. Sci. 2013;130:1840–1844. doi: 10.1002/app.39246. 10.1002/app.39246 Nikje M.M.A., Nazari F. Microwave-Assisted Depolymerization of Poly(Ethylene Terephthalate) [PET] at Atmospheric Pressure. Adv. Polym. Technol. 2006;25:242–246. doi: 10.1002/adv.20080. 10.1002/adv.20080 Dupont L., Gupta V.P. Production of Terephthalate Esters by Degradative Transesterification of Scrap or Virgin Terephthalate Polyesters 1994. [(accessed on 26 November 2024)]. Available online: https://patents.google.com/patent/US5319128A/en. Dupont L.A., Gupta V.P. Degradative Transesterification of Terephthalate Polyesters to Obtain DOTP Plasticizer for Flexible PVC. J. Vinyl Addit. Technol. 1993;15:100–104. doi: 10.1002/vnl.730150210. 10.1002/vnl.730150210 Liu S., Zhou L., Li L., Yu S., Liu F., Xie C., Song Z. Isooctanol Alcoholysis of Waste Polyethylene Terephthalate in Acidic Ionic Liquid. J. Polym. Res. 2013;20:310. doi: 10.1007/s10965-013-0310-6. 10.1007/s10965-013-0310-6 Chen J., Lv J., Ji Y., Ding J., Yang X., Zou M., Xing L. Alcoholysis of PET to Produce Dioctyl Terephthalate by Isooctyl Alcohol with Ionic Liquid as Cosolvent. Polym Degrad. Stab. 2014;107:178–183. doi: 10.1016/j.polymdegradstab.2014.05.013. 10.1016/j.polymdegradstab.2014.05.013 Zhou L., Lu X., Ju Z., Liu B., Yao H., Xu J., Zhou Q., Hu Y., Zhang S. Alcoholysis of Polyethylene Terephthalate to Produce Dioctyl Terephthalate Using Choline Chloride-Based Deep Eutectic Solvents as Efficient Catalysts. Green Chem. 2019;21:897–906. doi: 10.1039/C8GC03791D. 10.1039/C8GC03791D Rusmirovic J., Milosevic D., Velicic Z., Karanac M., Kalifa M., Nikolic J., Marinkovic A. Production of Rubber Plasticizers Based on Waste PET: Techno-Economical Aspect. Zast. Mater. 2017;58:189–197. doi: 10.5937/ZasMat1702189R. 10.5937/ZasMat1702189R Goto M., Koyamoto H., Kodama A., Hirose T., Nagaoka S. Depolymerization of Polyethylene Terephthalate in Supercritical Methanol. J. Phys. Condens. Matter. 2002;14:11427–11430. doi: 10.1088/0953-8984/14/44/494. 10.1088/0953-8984/14/44/494 Mohsin M.A., Alnaqbi M.A., Busheer R.M., Haik Y. Sodium Methoxide Catalyzed Depolymerization of Waste Polyethylene Terephthalate Under Microwave Irradiation. Catal. Ind. 2018;10:41–48. doi: 10.1134/S2070050418010087. 10.1134/S2070050418010087 Nunes C.S., Vieira da Silva M.J., Cristina da Silva D., Freitas A.d.R., Rosa F.A., Rubira A.F., Muniz E.C. PET Depolymerisation in Supercritical Ethanol Catalysed by [Bmim][BF4] RSC Adv. 2014;4:20308–20316. doi: 10.1039/C4RA00262H. 10.1039/C4RA00262H Nunes C., Souza P., Freitas A., Silva M., Rosa F., Muniz E. Poisoning Effects of Water and Dyes on the [Bmim][BF4] Catalysis of Poly(Ethylene Terephthalate) (PET) Depolymerization under Supercritical Ethanol. Catal. 2017;7:43. doi: 10.3390/catal7020043. 10.3390/catal7020043 Fukushima K., Coulembier O., Lecuyer J.M., Almegren H.A., Alabdulrahman A.M., Alsewailem F.D., Mcneil M.A., Dubois P., Waymouth R.M., Horn H.W., et al. Organocatalytic Depolymerization of Poly(Ethylene Terephthalate) J. Polym. Sci. A Polym. Chem. 2011;49:1273–1281. doi: 10.1002/pola.24551. 10.1002/pola.24551 Jia S., Ren Y., Zhang D., Hu J., Zeng Y., Wang G. Stannous Oxalate: An Efficient Catalyst for Poly(Trimethylene Terephthalate) Synthesis. Sci. China. B Chem. 2008;51:257–262. doi: 10.1007/s11426-007-0124-7. 10.1007/s11426-007-0124-7 Xie H., Meng H., Wu L., Li B.-G., Dubois P. In-Situ Synthesis, Thermal and Mechanical Properties of Biobased Poly(Ethylene 2,5-Furandicarboxylate)/Montmorillonite (PEF/MMT) Nanocomposites. Eur. Polym. J. 2019;121:109266. doi: 10.1016/j.eurpolymj.2019.109266. 10.1016/j.eurpolymj.2019.109266 Wilfong R.E. Linear Polyesters. J. Polym. Sci. 1961;54:385–410. doi: 10.1002/pol.1961.1205416010. 10.1002/pol.1961.1205416010 Dong H., Esser-Kahn A.P., Thakre P.R., Patrick J.F., Sottos N.R., White S.R., Moore J.S. Chemical Treatment of Poly(Lactic Acid) Fibers to Enhance the Rate of Thermal Depolymerization. ACS Appl. Mater. Interfaces. 2012;4:503–509. doi: 10.1021/am2010042. 10.1021/am2010042 22008224 Asakuma Y., Yamamura Y., Nakagawa K., Maeda K., Fukui K. Mechanism of Depolymerization Reaction of Polyethylene Terephthalate: Experimental and Theoretical Studies. J. Polym. Environ. 2011;19:209–216. doi: 10.1007/s10924-010-0263-3. 10.1007/s10924-010-0263-3 Poller R.C., Retout S.P. Organotin Compounds as Transesterification Catalysts. J. Organomet. Chem. 1979;173:C7–C8. doi: 10.1016/S0022-328X(00)84794-4. 10.1016/S0022-328X(00)84794-4 Muszyński M., Nowicki J., Krasuska A., Nowakowska-Bogdan E., Bartoszewicz M., Długosz M., Zygadło M., Dudek G. Synthesis of Bis(2-Ethylhexyl) Terephthalate from Waste Poly(Ethylene Terephthalate) Catalyzed by Tin Catalysts. Polym. Degrad. Stab. 2023;218:110592. doi: 10.1016/j.polymdegradstab.2023.110592. 10.1016/j.polymdegradstab.2023.110592 López-Fonseca R., Duque-Ingunza I., de Rivas B., Flores-Giraldo L., Gutiérrez-Ortiz J.I. Kinetics of Catalytic Glycolysis of PET Wastes with Sodium Carbonate. Chem. Eng. J. 2011;168:312–320. doi: 10.1016/j.cej.2011.01.031. 10.1016/j.cej.2011.01.031 Le N.H., Ngoc Van T.T., Shong B., Cho J. Low-Temperature Glycolysis of Polyethylene Terephthalate. ACS Sustain. Chem. Eng. 2022;10:17261–17273. doi: 10.1021/acssuschemeng.2c05570. 10.1021/acssuschemeng.2c05570 Casas A., Ramos M.J., Rodríguez J.F., Pérez Á. Tin Compounds as Lewis Acid Catalysts for Esterification and Transesterification of Acid Vegetable Oils. Fuel Process. Technol. 2013;106:321–325. doi: 10.1016/j.fuproc.2012.08.015. 10.1016/j.fuproc.2012.08.015 Ferreira D.A.C., Meneghetti M.R., Meneghetti S.M.P., Wolf C.R. Methanolysis of Soybean Oil in the Presence of Tin(IV) Complexes. Appl. Catal. A Gen. 2007;317:58–61. doi: 10.1016/j.apcata.2006.10.002. 10.1016/j.apcata.2006.10.002 trying2...
Surface Modification of Black Phosphorus with Group 13 Lewis Acids for Ambient Protection and Electronic Tuning. | LitMetric
Herein we introduce a facile, solution-phase protocol to modify the Lewis basic surface of few-layer black phosphorus (bP) and demonstrate its effectiveness at providing ambient stability and tuning of electronic properties. Commercially available group 13 Lewis acids that range in electrophilicity, steric bulk, and Pearson hard/soft-ness are evaluated. The nature of the interaction between the Lewis acids and the bP lattice is investigated using a range of microscopic (optical, atomic force, scanning electron) and spectroscopic (energy dispersive, X-ray photoelectron) methods. Al and Ga halides are most effective at preventing ambient degradation of bP (>84 h for AlBr ), and the resulting field-effect transistors show excellent IV characteristics, photocurrent, and current stability, and are significantly p-doped. This protocol, chemically matched to bP and compatible with device fabrication, opens a path for deterministic and persistent tuning of the electronic properties in bP.
Similar Publications
Angew Chem Int Ed Engl
December 2024
Jilin University College of Chemistry , State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , 2699 Qianjin Street, 130012, Changchun, CHINA.
Developing a simple and efficient catalyst system for closed-loop recycling of polymers to monomers is an essentially important but challenging task for the recycle of polymer wastes and preventing the downcycle of plastic products. Herein, we employ inexpensive, commercially available Lewis acids (LAs) to achieve closed-loop recycling in bulk through the catalytic depolymerization of aliphatic polyesters and polycarbonates. The scope of LAs is screened by thermogravimetric analysis experiments and distillation experiments.
View Article and Find Full Text PDF
Cancers utilize a simple glycan, Sialic Acid, to engage in metastatic processes via the Sialic acid (Sia) -Selectin pathway. Selectins recognize and bind to sialylated substrates, resulting in adhesion, migration, and extravasation, however, how deviations from the canonical form of Sia regulate binding to Selectin receptors (E, L, and P) on hemopoietic cells resulting in these metastatic processes, remained a gap in knowledge. De-O-acetylated Sias has been recently shown to be an integral substrate to the binding of sialic acid binding proteins.
View Article and Find Full Text PDF
Beilstein J Org Chem
December 2024
Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (IRYCIS), 28805 Madrid, Spain.
Asymmetric cycloaddition is a straightforward strategy which enables the synthesis of structurally distinct cyclic derivatives which are difficult to access by other methodologies, using an efficient and atom-economical path from simple precursors. In recent years several asymmetric catalytic cyclization strategies have been accomplished for the construction of -heterocycles using various catalytic systems such as chiral metal catalysts, chiral Lewis acids or chiral organocatalysts. This review presents an overview of the recent advances in enantioselective cyclization reactions of 1-azadienes catalyzed by non-covalent organocatalysts.
View Article and Find Full Text PDF
Int J Mol Sci
December 2024
Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology , ks. M. Strzody 9, 44-100 Gliwice, Poland.
Increasing plastic waste generation has become a pressing environmental problem. One of the most produced waste plastics originates from post-consumer packaging, of which PET constitutes a significant portion. Despite increasing recycling rates, its accumulation has created a need for the development of new recycling methods that can further expand the possibilities of recycling.
View Article and Find Full Text PDF
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!