The Cerebrospinal Fluid (CSF) can undergo shear deformations under head motions. Finite Element (FE) models, which are commonly used to simulate biomechanics of the brain, including traumatic brain injury, employ solid elements to represent the CSF. However, the limited number of elements paired with shear deformations in CSF can decrease the accuracy of their predictions. Large deformation problems can be accurately modelled using the mesh-free Smoothed Particle Hydrodynamics (SPH) method, but there is limited previous work on using this method for modelling the CSF. Here we explored the stability and accuracy of key modelling parameters of an SPH model of the CSF when predicting relative brain/skull displacements in a simulation of an in vivo mild head impact in human. The Moving Least Squares (MLS) SPH formulation and Ogden rubber material model were found to be the most accurate and stable. The strain and strain rate in the brain differed across the SPH and FE models of CSF. The FE mesh anchored the gyri, preventing them from experiencing the level of strains seen in the in vivo brain experiments and predicted by the SPH model. Additionally, SPH showed higher levels of strains in the sulci compared to the FE model. However, tensile instability was found to be a key challenge of the SPH method, which needs to be addressed in future. Our study provides a detailed investigation of the use of SPH and shows its potential for improving the accuracy of computational models of brain biomechanics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8647913 | PMC |
http://dx.doi.org/10.1002/cnm.3440 | DOI Listing |
Adv Mater
January 2025
Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
Porous lead iodide (PbI) film is crucial for the complete reaction between PbI and ammonium salts in sequential-deposition technology so as to achieve high crystallinity perovskite film. Herein, it is found that the tensile stress in tin (IV) oxide (SnO) electron transport layer (ETL) is a key factor influencing the morphology and crystallization of PbI films. Focusing on this, lithium trifluoromethanesulfonate (LiOTf) is used as an interfacial modifier in the SnO/PbI interface to decrease the tensile stress to reduce the necessary critical Gibbs free energy for PbI nuclei formation.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia 014010, China. Electronic address:
Fe/Mn-based metal oxides have attracted considerable attention as cathode materials for sodium-ion batteries owing to their low cost and high specific capacity. However, the relatively large ionic radius of the sodium ion (1.02 Å) results in inefficient diffusion kinetics, resulting in reduced battery performance.
View Article and Find Full Text PDFSci Rep
January 2025
Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
This study investigates a nanoparticle-based doxycycline (DOX) delivery system targeting cervical cancer cells via the CD44 receptor. Molecular docking revealed a strong binding affinity between hyaluronic acid (HA) and CD44 (binding energy: -7.2 kJ/mol).
View Article and Find Full Text PDFJ Food Sci
January 2025
College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China.
Flaxseed gum (FSG) has promising applications in the field of nano/microencapsulation for its biocompatibility and excellent physicochemical properties. In this study, FSG-based nano-microcapsules (FSG NPs) were prepared using high-speed shear homogenization combined with ultrasound for efficient encapsulation of secoisolariciresinol diglucoside (SDG). The particle size of FSG stands for nano-microcapsules (NP) was determined to be 336.
View Article and Find Full Text PDFSmall
January 2025
MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Owing to the nanoscale thickness, excellent mechanical and chemical stabilities, 2D materials including graphene and hexagonal boron nitride have emerged as promising artificial solid electrolyte interphase (SEI) candidates for lithium metal batteries. However, whether the implementation of 2D materials is beneficial to electrochemical performance remains controversial, and the key to confining the electroplated Li beneath the 2D materials remains elusive. Here, a nanocrystalline graphene (NG) film is synthesized on high-carbon Cu and the Li plating/stripping behavior on Cu grown with different 2D materials is investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!