Purpose: Low-field (<1 tesla) MRI scanners allow more widespread diagnostic use for a range of cardiac, musculoskeletal, and neurological applications. However, the feasibility of performing robust fMRI at low field has yet to be fully demonstrated. To address this gap, we investigated task-based fMRI using a highly sensitive transition-band balanced steady-state free precession approach and standard EPI on a 0.55 tesla scanner equipped with modern high-performance gradient coils and a receive array.
Methods: TR and flip-angle of transition-band steady-state free precession were optimized for 0.55 tesla by simulations. Static shimming was employed to compensate for concomitant field effects. Visual task-based fMRI data were acquired from 8 healthy volunteers. For comparison, standard EPI data were also acquired with TE = . Retrospective image-based correction for physiological effects (RETROICOR) was used to quantify physiological noise effects.
Results: Activation was robustly detected using both methods in a 4-min scan time. Transition-band steady-state free precession was found to be sensitive to interference from subtle spatial and temporal (field drift, respiration) variations in the magnetic field, counteracting potential advantages of the reduced magnetic susceptibility effects compared to its utilization at high field. These adverse effects could be partially remedied with static shimming and postprocessing approaches. Standard EPI proved more robust against the sources of interference.
Conclusion: BOLD contrast is sufficiently large at 0.55 tesla for robust detection of brain activation and may be employed to broaden the spectrum of applications of low-field MRI. Standard EPI outperforms transition-band steady-state free precession in terms of signal stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7904622 | PMC |
http://dx.doi.org/10.1002/mrm.28657 | DOI Listing |
Heart Vessels
December 2024
Department of Biomedical Engineering, Veterans Affairs Medical Center, University of Cincinnati, Rhodes Hall 593, 2851 Woodside Drive, Cincinnati, OH, 45219, USA.
Ejection fraction is commonly used to assess Duchenne muscular dystrophy-associated cardiomyopathy (DMDAC), but it may remain normal (wrongly) despite significant myocardial dysfunction in patients. Therefore, better indicators of myocardial dysfunction are needed for longitudinal (with time) assessment and treatment of DMDAC patients. This study evaluates non-invasive LV PV loop-derived elastance, contractility and efficiency in relation to EF for patients developing DMDAC.
View Article and Find Full Text PDFBMC Ophthalmol
December 2024
Department of Ophthalmology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan.
Background/aim: Mucosa-associated lymphoid tissue (MALT) lymphomas occur in not only the ocular adnexa, but rarely in the sclera or uvea. Histopathological confirmation contributes to a better understanding of the pathogenesis and treatment. We report a case of uveoscleral MALT lymphoma with angle-closure glaucoma.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Radiology, First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Xigang District, 116011, Dalian, China.
Our study aimed to investigate the relationship between δ-catenin expression and whole-brain small-world network in breast cancer patients before chemotherapy using rs-fMRI. The study was based on the hypothesis that different δ-catenin expression levels correspond to distinct brain imaging characteristics. A total of 105 pathologically confirmed breast cancer patients were collected and categorized into high δ-catenin expression (DH, 52 cases) and low expression (DL, 53 cases) groups.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University People's Hospital, #7 Wei Wu Road, Zhengzhou, 450003, Henan, China.
This study proposes a novel surgical technique for the excision of benign parotid tumors, utilizing a extracapsular dissection guided by a three dimensional digital model of the facial nerve(3DFN-ECD) and compares its clinical efficacy with the extracapsular dissection (ECD) method. This prospective study included 68 patients with benign parotid tumors. The control group (40 patients) received the ECD treatment, while the experimental group (28 patients), underwent the 3DFN-ECD approach proposed in this study.
View Article and Find Full Text PDFSci Rep
December 2024
GIN, IMN-UMR5293, CEA, CNRS, Université de Bordeaux, Bordeaux, France.
Cerebral microbleeds (CMB) represent a feature of cerebral small vessel disease (cSVD), a prominent vascular contributor to age-related cognitive decline, dementia, and stroke. They are visible as spherical hypointense signals on T2*- or susceptibility-weighted magnetic resonance imaging (MRI) sequences. An increasing number of automated CMB detection methods being proposed are based on supervised deep learning (DL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!