Translation elongation is a crucial phase during protein biosynthesis. In this study, we develop a novel deep reinforcement learning-based framework, named Riboexp, to model the determinants of the uneven distribution of ribosomes on mRNA transcripts during translation elongation. In particular, our model employs a policy network to perform a context-dependent feature selection in the setting of ribosome density prediction. Our extensive tests demonstrated that Riboexp can significantly outperform the state-of-the-art methods in predicting ribosome density by up to 5.9% in terms of per-gene Pearson correlation coefficient on the datasets from three species. In addition, Riboexp can indicate more informative sequence features for the prediction task than other commonly used attribution methods in deep learning. In-depth analyses also revealed the meaningful biological insights generated by the Riboexp framework. Moreover, the application of Riboexp in codon optimization resulted in an increase of protein production by around 31% over the previous state-of-the-art method that models ribosome density. These results have established Riboexp as a powerful and useful computational tool in the studies of translation dynamics and protein synthesis. Availability: The data and code of this study are available on GitHub: https://github.com/Liuxg16/Riboexp. Contact:zengjy321@tsinghua.edu.cn; songsen@tsinghua.edu.cn.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbaa412DOI Listing

Publication Analysis

Top Keywords

ribosome density
16
translation elongation
8
riboexp
7
riboexp interpretable
4
interpretable reinforcement
4
reinforcement learning
4
learning framework
4
ribosome
4
framework ribosome
4
density
4

Similar Publications

Studies have shown that gut microbiota (GM) and its metabolites, short-chain fatty acids (SCFAs), are associated with the development of postmenopausal osteoporosis (PMO). This study explored the clinical and laboratory evidence of the relationship of GM and SCFAs to PMO and attempted to determine the potential mechanism of action. 18 patients (Collected from the First Affiliated Hospital of Guangdong Pharmaceutical University between January 2021 and August 2021) were included in this retrospective study, including 10 PMO women and 8 healthy young women as the healthy control (HC) group from Guangzhou, China.

View Article and Find Full Text PDF

The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate the histological and ultrastructural features of the elastic cartilage at the tip of the vocal process in the arytenoid cartilage, which is essential for laryngeal biomechanics.

Methods: Five larynges, including the vocal folds and epiglottis, were examined using transmission electron microscopy. The elastic cartilage at the tip of the vocal process was compared to the epiglottic cartilage within the same larynx to elucidate structural differences.

View Article and Find Full Text PDF

Genome-resolved adaptation strategies of to changing conditions in the Chesapeake and Delaware Bays.

Appl Environ Microbiol

January 2025

Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA.

Unlabelled: The abundant and metabolically versatile aquatic bacterial order, , influences marine biogeochemical cycles. We assessed metagenome-assembled genome (MAG) abundance, estimated growth rates, and potential and expressed functions in the Chesapeake and Delaware Bays, two important US estuaries. Phylogenomics of draft and draft/closed genomes from this study and others placed 46 nearly complete MAGs from these bays into 11 genera, many were not well characterized.

View Article and Find Full Text PDF

Eastern equine encephalitis virus (EEEV) is an arthropod-borne, positive-sense RNA alphavirus posing a substantial threat to public health. Unlike similar viruses such as SARS-CoV-2, EEEV replicates efficiently in neurons, producing progeny viral particles as soon as 3-4 hours post-infection. EEEV infection, which can cause severe encephalitis with a human mortality rate surpassing 30%, has no licensed, targeted therapies, leaving patients to rely on supportive care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!