AI Article Synopsis

  • Dengue fever is a major mosquito-borne viral disease caused by four related viruses and is prevalent in tropical regions, making the development of effective treatments crucial.
  • Most existing antiviral drugs for diseases like HIV-1 and HCV target specific viral enzymes, but efforts to find similar inhibitors for dengue have largely failed.
  • The article suggests a shift towards phenotypic screening, an alternative drug discovery approach, which could lead to novel treatments for dengue by focusing on new chemical compounds with different mechanisms.

Article Abstract

Dengue fever is the world's most prevalent mosquito-borne viral disease caused by the four serotypes of dengue virus, which are widely spread throughout tropical and sub-tropical countries. There has been an urgent need to identify an effective and safe dengue inhibitor as a therapeutic and a prophylactic agent for dengue fever. Most clinically approved antiviral drugs for the treatment of human immunodeficiency syndrome-1 (HIV-1) and hepatitis C virus (HCV) target virally encoded enzymes such as protease or polymerase. Inhibitors of these enzymes were typically identified by target-based screening followed by optimization structure-based design. However, due to the lack of success to date of research efforts to identify dengue protease and polymerase inhibitors, alternative strategies for anti-dengue drug discovery need to be considered. As a complementary approach to the target-based drug discovery, phenotypic screening is a strategy often used in identification of new chemical starting points with novel mechanisms of action in the area of infectious diseases such as antibiotics, antivirals, and anti-parasitic agents. This article is an overview of recent reports on dengue phenotypic screens and discusses phenotype-based hit-to-lead chemistry optimization. The challenges encountered and the outlook on dengue phenotype-based lead discovery are discussed at the end of this article.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7593893PMC
http://dx.doi.org/10.1039/d0md00052cDOI Listing

Publication Analysis

Top Keywords

dengue
8
dengue fever
8
protease polymerase
8
polymerase inhibitors
8
drug discovery
8
progress phenotype-based
4
discovery
4
phenotype-based discovery
4
discovery dengue
4
dengue inhibitors
4

Similar Publications

Embryonic dormancy in Aedes aegypti and Aedes albopictus (Diptera: Culicidae): a survival and dispersal mechanism.

J Vector Borne Dis

October 2024

Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia, Laboratório de Parasitologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brasil.

Aedes aegypti and Aedes albopictus are the main vectors of arboviruses such as dengue, Zika virus, and chikungunya. Ae. aegypti is a widely spread mosquito in tropical and subtropical regions, whereas Ae.

View Article and Find Full Text PDF

The mosquito species Aedes aegypti (Linneaus) is the vector of multiple arboviruses, including dengue, Chikungunya, Zika, and yellow fever. Risk of infections associated with these arboviruses continues to expand as the geographical range of Ae. aegypti extends into temperate regions.

View Article and Find Full Text PDF

Measures to curb the spread of SARS-CoV-2 impacted not only COVID-19 dynamics, but also other infectious diseases, such as dengue in Brazil. The COVID-19 pandemic disrupted not only transmission dynamics due to changes in mobility patterns, but also several aspects of surveillance, such as care seeking behavior and clinical capacity. However, we lack a clear understanding of the overall impact on dengue in different parts of Brazil and the contribution of individual causal drivers.

View Article and Find Full Text PDF

Flaviviruses, which include globally impactful pathogens, such as West Nile virus, yellow fever virus, Zika virus, Japanese encephalitis virus, and dengue virus, contribute significantly to human infections. Despite the ongoing emergence and resurgence of flavivirus-mediated pathogenesis, the absence of specific therapeutic options remains a challenge in the prevention and treatment of flaviviral infections. Through the intricate processes of fusion, transcription, replication, and maturation, the complex interplay of viral and host metabolic interactions affects pathophysiology.

View Article and Find Full Text PDF

Climate-driven dengue fever outbreaks in Nepal: Trends, challenges, and strategies.

World J Virol

December 2024

Research Section, Nepal Health Research Council, Kathmandu 44600, Bagmati, Nepal.

Dengue fever (DF) has become a major public health concern in Nepal, with increasing outbreaks in recent years. Transmitted by Aedes mosquitoes, this climate-sensitive viral disease presents a significant challenge for healthcare providers and policymakers. Since 2004, Nepal has experienced a sharp increase in DF cases, peaking in 2022 with 54784 cases and 88 deaths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!