Glyco-gold nanoparticles (AuNPs) in aqueous dispersions were prepared by two approaches, namely direct reduction and ligand substitution methods. In the direct method, potassium salts of glyco thiols, with the general formula (CHO)NH(CH) CHSK (where , = 1; , = 2; , = 3, , = 4; , = 5), were used as reducing and capping agents to give the glyco thiolate capped gold nanoparticles (AuNPs -); meanwhile in the ligand exchange experiments, - and their acetylated forms (-) replaced citrate ions in citrate-capped gold nanoparticles to give additional AuNPs -. UV-visible spectroscopy, surface charge (-potential,) measurements and transmission electron microscopy (TEM) were used for physical and chemical characterization of all the resultant AuNPs. The -potential studies of AuNPs prepared through the direct method revealed that the surface charge is dependent on the length of the alkyl unit of (CHO)NH(CH) CHS ligands. TEM images of the acetylated and non-acetylated glyco thiolate capped gold nanoparticles (AuNPs -) prepared the ligand exchange method indicate that the size and shape of the gold nanoparticles remained the same as those of the citrate-capped gold nanoparticles used to prepare them. Selected AuNPs were tested on peripheral blood mononuclear cells (PBMCs) and the A549 cancer cell line to investigate their respective toxicity and cytotoxicity profiles. All AuNPs showed indiscriminate activity against both PBMCs and A4549 cells, although the gold nanoparticles having an acetylated glyco moiety with an amino propyl thiol linker as the ligand () prepared the citrate exchange method had better selectivity (PBMCs >59 mg mL and for A549 ∼7 μg mL).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485141PMC
http://dx.doi.org/10.1039/c9md00493aDOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
28
glyco thiolate
12
thiolate capped
12
capped gold
12
nanoparticles aunps
12
nanoparticles
8
aunps
8
direct method
8
ligand exchange
8
citrate-capped gold
8

Similar Publications

A SiO@Au@Polyaniline (SiO@Au@PAN) system has been successfully fabricated leveraging the synergistic effects of gold nanoparticles (AuNPs) to realize enhanced photothermal performance. The SiO@Au@PAN exhibited strong near-infrared (NIR) absorbance, excellent photothermal conversion efficiency, good dispersibility, and outstanding photostability. The SiO nanospheres as the template provided numerous binding sites for coating of AuNPs.

View Article and Find Full Text PDF

Gold nanoparticles supported onto zwitterionic polymer capillary monoliths meant for efficient enrichment of microcystins in water.

Talanta

December 2024

Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou, 350116, Fuzhou University, China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, 350116, China. Electronic address:

The release of microcystin (MCs) in aquatic ecosystems poses a substantial risk to the safety of irrigation and drinking water. In view of the challenges associated with monitoring MCs in water bodies, given their low concentration levels (μg/L to ng/L) and the presence of diverse matrix interferences, there is an urgent need to develop an efficient, cost-effective and selective enrichment technique for MCs prior to its quantification. In this work, a gold nanoparticles (AuNPs)-functionalized zwitterionic polymer monolith was described and further applied for the affinity enrichment of MCs.

View Article and Find Full Text PDF

Nanoparticle-mediated light-driven LAMP combined with test strips for sensitive and rapid visual detection of antibiotic resistance genes.

J Hazard Mater

December 2024

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Antibiotic resistance genes (ARGs) are markers of drug-resistant pathogens, monitoring them contributes to prevent resistance to drugs. The detection methods for ARGs including PCR and isothermal amplification are sensitive and selective. However, it may take several hours or cannot be used on spot.

View Article and Find Full Text PDF

Developing chiral plasmonic nanostructures represents a significant scientific challenge due to their multidisciplinary potential. Observations have revealed that the dichroic behavior of metal plasmons changes when chiral molecules are present in the system, offering promising applications in various fields such as nano-optics, asymmetric catalysis, polarization-sensitive photochemistry and molecular detection. In this study, we explored the synthesis of plasmonic gold nanoparticles and the role of cysteine in their chiroplasmonic properties.

View Article and Find Full Text PDF

Multimodal nanoenzyme-linked aptamer assay for Salmonella typhimurium based on catalysis and photothermal effect of PB@Au.

Mikrochim Acta

January 2025

Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong, College of Life Science, Normal University, Shandong Normal University, Jinan, 250014, People's Republic of China.

A composite nanomaterial of Prussian blue@gold nanoparticles (PB@Au) with catalytic and photothermal properties was proposed, which combined with anti-matrix interference aptamers to achieve robust specificity and sensitivity in the detection of Salmonella typhimurium (S. typhimurium). The detection probe, PB@Au-Aptamer (PB@Au-Apt), was designed to exhibit high specificity for the target and catalyze the signal generation to produce a color change, thereby enabling rapid detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!