Ultralight materials present an opportunity to dramatically increase the efficiency of load-bearing aerostructures. To date, however, these ultralight materials have generally been confined to the laboratory bench-top, due to dimensional constraints of the manufacturing processes. We show a programmable material system applied as a large-scale, ultralight, and conformable aeroelastic structure. The use of a modular, lattice-based, ultralight material results in stiffness typical of an elastomer () at a mass density typical of an aerogel ( ). This, combined with a building block based manufacturing and configuration strategy, enables the rapid realization of new adaptive structures and mechanisms. The heterogeneous design with programmable anisotropy allows for enhanced elastic and global shape deformation in response to external loading, making it useful for tuned fluid-structure interaction. We demonstrate an example application experiment using two building block types for the primary structure of a wingspan aircraft, where we spatially program elastic shape morphing to increase aerodynamic efficiency and improve roll control authority, demonstrated with full-scale wind tunnel testing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816774 | PMC |
http://dx.doi.org/10.1088/1361-665X/ab0ea2 | DOI Listing |
Sci Rep
December 2024
College of Energy Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.
Affected by weakening effect of water in the goaf, the bearing capacity of coal pillar reduced, and coal pillar rock burst is prone to occur, which is a serious threat to mine safety in production. In order to study the equivalent width and stability of coal pillar in water-rich coal seam, taking the section coal pillar of a working face as the research object, combined with laboratory test, theoretical analysis, simulation and engineering practice, the stress, elastic core area width, damage degree and energy accumulation of 36 m water-immersed coal pillar and 26 m, 28 m, 30 m, 32 m, 36 m unimmersed coal pillars are analyzed. The research results show that: (1) The reasonable width of coal pillar under flooded and unflooded conditions is 36.
View Article and Find Full Text PDFCell Biochem Biophys
December 2024
Department of Biomaterials/Osaka Dental University, 8-1, Kuzuhahanazono-cho, Osaka, 573-1121, Japan.
Elastic fibers of the internal and external elastic laminae maintain blood vessel shapes. Impairment of smooth muscle cell function leads to vascular disease development. F-box and WD-40 domain-containing protein 2 (FBXW2) is associated with elastic fibers and osteocalcin expression for bone regeneration in the periosteum.
View Article and Find Full Text PDFSci Rep
December 2024
Tianjin International Engineering Institute, Tianjin University, Tianjin, 300072, China.
In Song dynasty, Dou-Gong construction techniques, Tou-Xin-Zao and Ji-Xin-Zao, varied by the number of Fang connecting to the exterior. This study examines the impact of Fang connections on the mechanical characteristics of Dou-Gong. Six full-scale models were constructed and subjected to quasi-static loading tests in the horizontal Beam and Fang directions under vertical load.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Center for Advanced Eye Care, Vero Beach, FL 32960, USA.
We have compared the biomechanical properties of human and porcine corneas using vibrational optical coherence tomography (VOCT). The elastic modulus of the cornea has been previously reported in the literature to vary from about several kPa to more than several GPa based on the results of different techniques. In addition, the formation of corneal cones near the central cornea in keratoconus has been observed in the clinic.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
Ocean and Maritime Digital Technology Research Division, Korea Research Institute of Ships and Ocean Engineering, Daejeon 34103, Republic of Korea.
Although the Doppler velocity log is widely applied to measure underwater fluid flow, it requires high power and is inappropriate for measuring low flow velocity. This study proposes a fluid flow sensor that utilizes optical flow sensing. The proposed sensor mimics the neuromast of a fish by attaching a phosphor to two pillar structures (A and B) produced using ethylene propylene diene monomer rubber.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!