Graphene oxide membranes with stable porous structure for ultrafast water transport.

Nat Nanotechnol

Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, China.

Published: March 2021

The robustness of carbon nanomaterials and their potential for ultrahigh permeability has drawn substantial interest for separation processes. However, graphene oxide membranes (GOms) have demonstrated limited viability due to instabilities in their microstructure that lead to failure under cross-flow conditions and applied hydraulic pressure. Here we present a highly stable and ultrapermeable zeolitic imidazolate framework-8 (ZIF-8)-nanocrystal-hybridized GOm that is prepared by ice templating and subsequent in situ crystallization of ZIF-8 at the nanosheet edges. The selective growth of ZIF-8 in the microporous defects enlarges the interlayer spacings while also imparting mechanical integrity to the laminate framework, thus producing a stable microstructure capable of maintaining a water permeability of 60 l m h bar (30-fold higher than GOm) for 180 h. Furthermore, the mitigation of microporous defects via ZIF-8 growth increased the permselectivity of methyl blue molecules sixfold. Low-field nuclear magnetic resonance was employed to characterize the porous structure of our membranes and confirm the tailored growth of ZIF-8. Our technique for tuning the membrane microstructure opens opportunities for developing next-generation nanofiltration membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41565-020-00833-9DOI Listing

Publication Analysis

Top Keywords

graphene oxide
8
oxide membranes
8
porous structure
8
growth zif-8
8
microporous defects
8
membranes
4
membranes stable
4
stable porous
4
structure ultrafast
4
ultrafast water
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!