The story of human dreams about curing all diseases, disorders and lesions is as old as human history. In the frontier of medical science, nanomedicine is trying to solve the problem. In this study, inspired by nanotechnology and using "grafting from" approach, a novel lignin-based nanogel was synthesized using atom transfer radical polymerization (ATRP) method. N-isopropylacrylamide (NIPAM) and N,N-dimethylaminoethylmethacrylate (DMAEMA) comonomers were graft copolymerized from fully brominated lignin as ATRP macroinitiator to synthesize lignin-g-P(NIPAM-co-DMAEMA) nanogel (LNDNG). By controlling the initial comonomer compositions and ATRP conditions, four LNDNG systems with different lower critical solution temperatures (LCSTs) of 32, 34, 37 and 42 °C were prepared. The LNDNGs were evaluated by GPC, FT-IR, H NMR, UV-Vis, DLS, SEM and TEM analyses. The prepared nanogels exhibited an average diameter of 150 nm with dual temperature and pH responsiveness. Curcumin (CUR) loading capacity and encapsulation efficiency of the LNDNGs were 49.69% and 92.62% on average, respectively. The cumulative release amount of loaded CUR was observed to be 65.36% after 72 h. The new lignin-based NGs proposed in the present work seems to be a promising, safe and comparable system in a near future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820611 | PMC |
http://dx.doi.org/10.1038/s41598-021-81393-3 | DOI Listing |
Biomaterials
November 2023
National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan City, China; Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, 430074, Wuhan City, China.
An embolic reagent with easy injection, well-controlled target embolization, and sustained release of chemotherapy drugs is urgently needed for successful trans-arterial chemo-embolization (TACE) treatment. However, the development of a highly effective embolic reagent is still challenged. Here, inspired and guided by the structural supporting properties and defense mechanisms of wood cell walls, an ideal lignin-based embolic nanogel (DOX-pN-KL) was explored.
View Article and Find Full Text PDFSci Rep
January 2021
Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
The story of human dreams about curing all diseases, disorders and lesions is as old as human history. In the frontier of medical science, nanomedicine is trying to solve the problem. In this study, inspired by nanotechnology and using "grafting from" approach, a novel lignin-based nanogel was synthesized using atom transfer radical polymerization (ATRP) method.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
May 2019
Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China. Electronic address:
Although antibiotics have been widely used, the problem of bacterial infection in the medical field still faces many challenges. In this study, we designed a new lignin based antimicrobial hydrogel for antimicrobial application. First, we grafted the amino group onto sodium lignin sulfonate through Mannich reaction to obtain lignin amine (LA), which can cross-link with poly(vinyl alcohol) (PVA) to form hydrogel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!