Subarachnoid hemorrhage (SAH) is a life-threatening cerebrovascular disease, and most of the SAH patients experience sleep deprivation during their hospital stay. It is well-known that sleep deprivation is one of the key components of developing several neurological disorders, but its effect on brain damage after SAH has not been determined. Therefore, this study was designed to evaluate the effect of sleep deprivation using an experimental SAH model in rats. Induction of sleep deprivation for 24 h aggravated the SAH-induced brain damage, as evidenced by brain edema, neuronal apoptosis and activation of caspase-3. Sleep deprivation also worsened the neurological impairment and cognitive deficits after SAH. The results of immunostaining and western blot showed that sleep deprivation increased the activation of microglial cells. In addition, sleep deprivation differently regulated the expression of anti-inflammatory and pro-inflammatory cytokines. The results of immunofluorescence staining and western blot showed that sleep deprivation markedly increased the activation of Toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein 88 (MyD88). Mechanically, treatment with the TLR4 inhibitor TAK-242 or the MyD88 inhibitor ST2825 significantly attenuated the brain damage and neuroinflammation induced by sleep deprivation after SAH. In conclusion, our results indicate that sleep deprivation aggravates brain damage and neurological dysfunction following experimental SAH in rats. These effects were mediated by the activation of the TLR4-MyD88 cascades and regulation of neuroinflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880348 | PMC |
http://dx.doi.org/10.18632/aging.202503 | DOI Listing |
J Sleep Res
January 2025
Flinders Health and Medical Research Institute: Sleep Health, Flinders University, Adelaide, South Australia, Australia.
Sleepiness-related errors are a leading cause of driving accidents, requiring drivers to effectively monitor sleepiness levels. However, there are inter-individual differences in driving performance after sleep loss, with some showing poor driving performance while others show minimal impairment. This research explored if there are differences in self-reported sleepiness and driving performance in healthy drivers who exhibited vulnerability or resistance to objective driving impairment following extended wakefulness.
View Article and Find Full Text PDFSleep Breath
January 2025
Faculty of Medicine, Institute of Health Sciences, Department of Public Health, University of Hacettepe, Ankara, Türkiye.
Background: Fatigue, sleep disorders, and daytime sleepiness are interconnected, posing significant risks to occupational health and workplace safety. However, the literature on their relationships remains fragmented, with notable gaps, particularly concerning working populations. This descriptive cross-sectional study aimed to evaluate sleep quality (SQ), daily sleep time in hours (DST), daytime sleepiness, fatigue levels among employees in an automotive workplace, and their interrelationships.
View Article and Find Full Text PDFStudy Objectives: The Psychomotor Vigilance Task (PVT) is widely recognized as the gold standard for measuring vigilance, providing a rapid and objective measure of this state. While driving simulations are also used, they typically require longer administration times. This study examines the sensitivity of driving simulation variables to sleep deprivation throughout the task.
View Article and Find Full Text PDFSleep Biol Rhythms
January 2025
Sleep Research Institute, Edogawa University, 474 Komagi, Nagareyama, Chiba 270-0198 Japan.
To examine whether the effects of low sleep quality, sleep deprivation, and chronotype on daytime cognitive function varied by age group. All data were collected online. We obtained the data from 366 employed people in their 20s, 40s, or 60s.
View Article and Find Full Text PDFNeurosciences (Riyadh)
January 2025
From the Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah, Kingdom of Saudi Arabia.
The hippocampus, noted as (HC), plays a crucial role in the processes of learning, memory formation, and spatial navigation. Recent research reveals that this brain region can undergo structural and functional changes due to environmental exposures, including stress, noise pollution, sleep deprivation, and microgravity. This review synthesizes findings from animal and human studies, emphasizing the HC's plasticity in response to these factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!