Flexible electronic devices have gained significant interest due to their different potential applications. Herein, we report highly flexible, stretchable, and sensitive sensors made of sprayed CNT layer, sandwiched between two polymer layers. A facile fabrication process was employed in which the CNT solution was directly sprayed onto a patterned bottom polymer layer, above which a second polymer layer was casted to get a sandwiched composite structure. Varying amounts of CNT solution (i.e., 10, 25, 40, 70, and 100 mL) were sprayed to get conductive CNT layers of different thicknesses/densities. The physical characteristics of the conductive CNT layers were studied through SEM and optical images. The starting electrical resistance values (without strain) as well as the changes in electrical resistance against human body motions were monitored. The synthesized samples exhibited good response against finger and wrist bending. The conductivity of the samples increased with increase of CNT solution volume while the sensitivity followed the inverse relation, suggesting that the sensors with controlled sensitivity could be fabricated for targeted strain ranges using the proposed method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835748 | PMC |
http://dx.doi.org/10.3390/polym13020311 | DOI Listing |
ACS Nanosci Au
December 2024
Department of Chemistry, Queen Mary University of London, London E1 4NS, U.K.
Herein, we present a strategy for the controlled assembly of single-walled carbon nanotube (SWCNT) linear junctions mediated by DNA as a functional linker. We demonstrate this by employing SWCNTs of two different chiralities via the specific design of DNA sequences and chiral selection. Streptavidin and AuNP labeling of the SWCNT sidewalls demonstrate the presence of two different chirality within each individual CNT-DNA-CNT junction.
View Article and Find Full Text PDFACS Omega
December 2024
School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, P. R. China.
A strategically designed ternary nanohybrid (TNS-PDA/CNT), consisting of titanate nanosheet (TNS) and polydopamine-modified multiwalled carbon nanotube (PDA/CNT composite), was synthesized by the facile hydrothermal method and wet impregnation method for removal of U(VI) from aqueous solution and were characterized by transmission electron microscopy (TEM), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), Raman spectroscopy, Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). TNSs were introduced into the PDA/CNT composite, which effectively averted the agglomeration of the CNT and further exposed more adsorption sites. PDA thin layer exposing more active sites was conducive to enhance adsorption capacity and kinetic.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Changchun Gold Research Institute Co., Ltd., Changchun 130012, China.
The eco-friendly treatment of cyanide tailings (CT) using microorganisms is a cost-effective and promising technology. However, this process often generates the secondary pollutants, such as ammonia nitrogen (NH-N), which can adversely impacts the surrounding environment. The accumulation of NH-N is also toxic to cyanide-degrading microorganisms, presenting a significant challenge in achieving simultaneous cyanide degradation and NH₄⁺-N mitigation.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
Carbon nanotubes-driven persulfates oxidation processes (CNTs/PS) have been extensively studied for environmental remediation. Solution pH is one of the main factors affecting wastewater treatment, but it is often overlooked. Herein, we report the effect laws of pH on the mechanism of peroxymonosulfate (PMS) or peroxydisulfate (PDS) activation by CNTs.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Eco-Friendly Circular Advanced Materials and Additive Manufacturing (ECAM) Lab, Department of Mechanical and Manufacturing Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!