Rodent-borne orthohantaviruses are asymptomatic in their natural reservoir, but they can cause severe diseases in humans. Although an exacerbated immune response relates to hantaviral pathologies, orthohantaviruses have to antagonize the antiviral interferon (IFN) response to successfully propagate in infected cells. We studied interactions of structural and nonstructural (NSs) proteins of pathogenic Puumala (PUUV), low-pathogenic Tula (TULV), and non-pathogenic Prospect Hill (PHV) viruses, with human type I and III IFN (IFN-I and IFN-III) pathways. The NSs proteins of all three viruses inhibited the RIG-I-activated IFNβ promoter, while only the glycoprotein precursor (GPC) of PUUV, or its cleavage product Gn/Gc, and the nucleocapsid (N) of TULV inhibited it. Moreover, the GPC of both PUUV and TULV antagonized the promoter of IFN-stimulated responsive elements (ISRE). Different viral proteins could thus contribute to inhibition of IFNβ response in a viral context. While PUUV and TULV strains replicated similarly, whether expressing entire or truncated NSs proteins, only PUUV encoding a wild type NSs protein led to late IFN expression and activation of IFN-stimulated genes (ISG). This, together with the identification of particular domains of NSs proteins and different biological processes that are associated with cellular proteins in complex with NSs proteins, suggested that the activation of IFN-I is probably not the only antiviral pathway to be counteracted by orthohantaviruses and that NSs proteins could have multiple inhibitory functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835746PMC
http://dx.doi.org/10.3390/v13010140DOI Listing

Publication Analysis

Top Keywords

nss proteins
24
proteins
9
viral proteins
8
proteins pathogenic
8
human type
8
gpc puuv
8
puuv tulv
8
nss
7
puuv
5
interactions viral
4

Similar Publications

A fluorescence probe for "switch-on" detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO nanosheets (Au NCs-MnO NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system, MnO NSs function as both energy acceptors and target identifiers, effectively quenches the fluorescence of Au NCs via fluorescence resonance energy transfer (FRET). The presence of ALP catalyzes the hydrolysis of L-ascorbic acid-2-phosphate (AAP) to ascorbic acid (AA), reducing MnO NSs to Mn and facilitate the fluorescence recovery of Au NCs.

View Article and Find Full Text PDF

Serological typing of MNS polymorphic antigens - M, N, S and s - remains a fundamental technique in transfusion medicine and prenatal care, providing essential information for matching blood donors and recipients and managing haemolytic disease. Although this method is well proven and routinely used, it is not a comprehensive solution, as it has several weaknesses. Alternatively, multiplex polymerase chain reaction (PCR) is a commonly used genotyping tool due to its potency and ability to amplify several DNA targets simultaneously in a single reaction.

View Article and Find Full Text PDF

Development of a novel multi-epitope mRNA vaccine candidate to combat SFTSV pandemic.

PLoS Negl Trop Dis

January 2025

Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China.

Severe Fever with Thrombocytopenia Syndrome virus (SFTSV) is a novel identified pathogen, despite two decades of research on SFTSV, the potential widespread threats pose a significant challenge for researchers in developing new treatment and prevention methods. In this present, we have developed a multi-epitope mRNA vaccine for SFTSV and valid it with in silico methods. We screened 9 immunodominant epitopes for cytotoxic T cells (CTL), 7 for helper T cells (HTL), and 8 for Linear B-cell (LBL) based on promising candidate protein Gn, Gc, Np, and NSs.

View Article and Find Full Text PDF

Periodic Light Modulations for Low-Cost Wide-Field Imaging of Luminescence Kinetics Under Ambient Light.

Adv Sci (Weinh)

January 2025

PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, Paris, 75005, France.

Imaging luminescence kinetics is invaluable in many fields, including biology and chemistry. However, the luminescence lifetime of most photo-activated states is in the low ns-µs range and its measurement requires adding costly image intensifiers to cameras to access the fast phenomena present. Here, the Rectified Imaging under Optical Modulation (RIOM) and Heterodyne Imaging under Optical Modulation (HIOM) protocols make this possible with standard low-cost cameras only, even under ambient light.

View Article and Find Full Text PDF

Investigating the reassortment potential and pathogenicity of the S segment in Akabane virus using a reverse genetics system.

BMC Vet Res

January 2025

Laboratory of Veterinary Infectious Disease, College of Veterinary of Medicine, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea.

Background: Akabane virus (AKAV) is an arthropod-borne virus that causes congenital malformations and neuropathology in cattle and sheep. In South Korea, AKAVs are classified into two main genogroups: K0505 and AKAV-7 strains. The K0505 strain infects pregnant cattle, leading to fetal abnormalities, while the AKAV-7 strain induces encephalomyelitis in post-natal cattle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!