This work is dedicated to the description of the degradation of GaAs solar cells under continuous laser irradiation. Constant and strong exposure of the solar cell was performed over two months. Time-dependent electrical characteristics are presented. The structure of the solar cells was studied at the first and last stages of degradation test. The data from Raman spectroscopy, reflectometry, and secondary ion mass spectrometry confirm displacement of titanium and aluminum atoms. X-ray photoelectron spectroscopy showed a slight redistribution of oxygen bonds in the anti-corrosion coating.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7833441PMC
http://dx.doi.org/10.3390/ma14020461DOI Listing

Publication Analysis

Top Keywords

solar cells
12
gaas solar
8
characterization gaas
4
solar
4
cells supercontinuum
4
supercontinuum long-time
4
long-time illumination
4
illumination work
4
work dedicated
4
dedicated description
4

Similar Publications

Although fullerene bisadducts are promising electron-transporting materials for tin halide perovskite solar cells, they are generally synthesized as a mixture of isomeric products that require a complicated separation process. Here, we introduce a phenylene-bridged bis(pyrrolidino)fullerene, Bis-PC, which forms only a single isomer due to geometrical restriction. When used in a tin perovskite solar cell with a PEAFASnI (PEA: phenylethylammonium and FA: formamidinium) light absorption layer, the resulting open-circuit voltage ( ) was 0.

View Article and Find Full Text PDF

Morphology control plays a key role for improving efficiency and stability of bulk heterojunctions (BHJ) organic solar cells (OSCs). Halogenation and methoxylation are two separate ways successfully adopted in additives for morphology optimization. In this work, these two strategies are combined together.

View Article and Find Full Text PDF

Due to high binding energy and extremely short diffusion distance of Frenkel excitons in common organic semiconductors at early stage, mechanism of interface charge transfer-mediated free carrier generation has dominated the development of bulk heterojunction (BHJ) organic solar cells (OSCs). However, considering the advancements in materials and device performance, it is necessary to reexamine the photoelectric conversion in current-stage efficient OSCs. Here, we propose that the conjugated materials with specific three-dimensional donor-acceptor conjugated packing potentially exhibit distinctive charge photogeneration mechanism, which spontaneously split Wannier-Mott excitons to free carriers in pure phases.

View Article and Find Full Text PDF

It is necessary to overcome the relatively low conductivity of ionic liquids (ILs) caused by steric hindrance effects to improve their ability to passivate defects and inhibit ion migration to boost the photovoltaic performance of perovskite solar cells (PSCs). Herein, we designed and prepared a kind of low-concentration 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF) diluted with propylene carbonate (PC) via an ultrasonic technique (PC/IL). The decrease in the decomposition temperature related to the IL part and the increase in the sublimation temperature related to the PC part facilitated the use of PC/IL to effectively delay the crystallization process and passivate the defects in multiple ways to obtain high-quality perovskite films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!