Porous AlO membranes were prepared through a phase-inversion tape casting/sintering method. The alumina membranes were embedded with finger-like pores perpendicular to the membrane surface. Bare alumina membranes are naturally hydrophilic and underwater oleophobic, while fluoroalkylsilane (FAS)-grafted membranes are hydrophobic and oleophilic. The coupling of FAS molecules on alumina surfaces was confirmed by Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy measurements. The hydrophobic membranes exhibited desired thermal stability and were super durable when exposed to air. Both membranes can be used for gravity-driven oil/water separation, which is highly cost-effective. The as-calculated separation efficiency () was above 99% for the FAS-grafted alumina membrane. Due to the excellent oil/water separation performance and good chemical stability, the porous ceramic membranes display potential for practical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832897PMC
http://dx.doi.org/10.3390/ma14020457DOI Listing

Publication Analysis

Top Keywords

porous ceramic
8
membranes
8
ceramic membranes
8
alumina membranes
8
oil/water separation
8
gravity-driven separation
4
separation oil/water
4
oil/water mixture
4
mixture porous
4
membranes desired
4

Similar Publications

Article Synopsis
  • Researchers developed a radiative cooling textile (PAC@T) inspired by flamingo feathers, using polyacrylonitrile and alumina particles to enhance cooling and comfort.
  • PAC@T achieves high solar reflectance (95%) and mid-infrared emissivity (91.8%), resulting in effective cooling that is 6.1°C cooler than traditional textiles.
  • The textile is made from common materials and offers advantages like durability and energy-free operation, posing significant potential for future industrial applications in personal thermoregulation.
View Article and Find Full Text PDF

The realization of low thermal conductivity at high temperatures (0.11 W m K 800 °C) in ambient air in a porous solid thermal insulation material, using stable packed nanoparticles of high-entropy spinel oxide with 8 cations (HESO-8 NPs) with a relatively high packing density of ≈50%, is reported. The high-density HESO-8 NP pellets possess around 1000-fold lower thermal diffusivity than that of air, resulting in much slower heat propagation when subjected to a transient heat flux.

View Article and Find Full Text PDF

3D Printing of Porous Ceramics for Enhanced Thermal Insulation Properties.

Adv Sci (Weinh)

December 2024

Advanced Materials Additive Manufacturing Innovation Research Centre, College of Engineering, Hangzhou City University, Hangzhou, 310015, P. R. China.

Article Synopsis
  • Porous thermal insulating ceramics are essential for industrial and everyday applications, helping to lower energy use and improve comfort while promoting sustainability.
  • This review dives into the production of these ceramics using 3D printing, discussing fabrication techniques, materials, advantages, and limitations.
  • It highlights recent advancements in design and optimization of pore structures, while also addressing challenges to adoption and future research trends in enhancing thermal insulation through 3D printing.
View Article and Find Full Text PDF

Electrochemical carbon dioxide (CO) reduction from aqueous solutions offers a promising strategy to overcome flooding and salt precipitation in gas diffusion electrodes used in gas-phase CO electrolysis. However, liquid-phase CO electrolysis often exhibits low CO reduction rates because of limited CO availability. Here, a macroporous Ag mesh is employed and activated to achieve selective CO conversion to CO with high rates from an aqueous bicarbonate solution.

View Article and Find Full Text PDF

A review of cellulose and lignin contained rattan materials: Structure, properties, modifications, applications and perspectives.

Int J Biol Macromol

December 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Rattan is a multi-purpose plant resource in the tropical forest treasure house. With its good technological characteristics, it has become an excellent material for the preparation of industry. The original rattan is an important forest product second only to wood and bamboo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!