Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A new material model of magnesium alloys, combining both Hill'48 yield function and Cazacu'06 yield function, was developed and programmed into LS-DYNA using user subroutine, in which both slip dominant and twinning/untwinning dominant hardening phenomena were included. First, a cyclic load test was performed, and its finite element analysis was carried out to verify the new material model. Then, the deformation behaviors of the magnesium crash box subjected to the compressive impact loading were investigated using the developed material model. Compared with the experimental results, the new material model accurately predicted the deformation characteristics of magnesium alloy parts. Additionally, the effect of the thickness distribution, initial deflection and contact friction coefficient in simulation models on deformation behaviors were investigated using this validated material model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832298 | PMC |
http://dx.doi.org/10.3390/ma14020454 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!