The aim of this study was to characterize a 1:1 molar ratio of a pharmacologically relevant co-amorphous atorvastatin-irbesartan (ATR-IRB) system obtained by quench cooling of the crystalline ATR/IRB physical mixture for potential use in the fixed-dose combination therapy. The system was characterized by employing standard differential scanning calorimetry (DSC), Fourier transform-infrared spectroscopy (FT-IR), and intrinsic dissolution rate studies. Quantum mechanical calculations were performed to obtain information regarding intermolecular interactions in the studied co-amorphous ATR-IRB system. The co-amorphous formulation showed a significant improvement in the intrinsic dissolution rate (IDR) of IRB over pure crystalline as well as its amorphous counterpart. An unusual behavior was observed for ATR, as the IDR of ATR in the co-amorphous formulation was slightly lower than that of amorphous ATR alone. Short-term physical aging studies of up to 8 h proved that the ATR-IRB co-amorphous system remained in the amorphous form. Furthermore, no physical aging occurred in the co-amorphous system. FT-IR, density functional theory calculations, and analysis of value of co-amorphous system using the Couchman-Karasz equation revealed the presence of molecular interactions between APIs, which may contribute to the increased physical stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831949PMC
http://dx.doi.org/10.3390/pharmaceutics13010118DOI Listing

Publication Analysis

Top Keywords

co-amorphous system
12
co-amorphous
8
co-amorphous atorvastatin-irbesartan
8
fixed-dose combination
8
combination therapy
8
atr-irb system
8
intrinsic dissolution
8
dissolution rate
8
co-amorphous formulation
8
physical aging
8

Similar Publications

Drug-drug co-amorphous systems are a promising approach to improve the aqueous solubility of poorly water-soluble drugs. This study explores the combination of breviscapine (BRE) and matrine (MAT) form an amorphous salt, aiming to synergistically enhance the solubility and dissolution of BRE. In silico analysis of electrostatic potential and local ionization energy were conducted on BRE-MAT complex to predict the intermolecular interactions, and solvent-free energies were calculated using thermodynamic integration and density functional theory.

View Article and Find Full Text PDF

Breaking barriers: enhancing solubility and dissolution of efonidipine using co-amorphous formulations.

Naunyn Schmiedebergs Arch Pharmacol

November 2024

School of Pharmacy, RK University, Kasturbadham, Rajkot, Gujarat, 360020, India.

The study aims to enhance the solubility and dissolution characteristics of efonidipine hydrochloride ethanolate (EFD), an antihypertensive drug, through the co-amorphous approach. Hypertension is a prevalent chronic condition characterized by consistently elevated blood pressure. Efonidipine, a BCS class II drug, has high permeability but low solubility, limiting its therapeutic effectiveness.

View Article and Find Full Text PDF

The objective of this work was to improve the solubility and discover a stable co-amorphous form of valsartan (VAL), a BCS class-II drug, by utilizing small molecule 2-Aminopyridine (2-AP) in varying molar ratios (2:1, 1:1, and 1:2), employing a solvent evaporation technique. Additionally, by way of a density functional theory (DFT)-based computational method with commercially available software, a new approach for determining the intermolecular connectivity of multi-molecular hydrogen bonding systems was proposed. The binary systems' features were characterized by PXRD, DSC, FTIR, and Raman spectroscopy, while the equilibrium solubility and dissolution was determined in 0.

View Article and Find Full Text PDF

"Aging" in co-amorphous systems: Dissolution decrease and non-negligible dissolution increase during storage without recrystallization.

Int J Pharm

December 2024

Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Science, Wenzhou 325024, Zhejiang, China. Electronic address:

Developing co-amorphous systems is a promising strategy to improve the water solubility of poorly water-soluble drugs. Most of the studies focused on the initial dissolution rate of the fresh co-amorphous systems, and only physical stability was investigated after storage. However, the maintenance of the enhanced dissolution rate of co-amorphous systems after storage is necessary for further product development.

View Article and Find Full Text PDF

Evaluation of aspartame as a co-former in the preparation of co-amorphous formulations of dipyridamole using spray drying.

Int J Pharm

December 2024

Pharmaceutical and Molecular Biotechnology Research Centre, South East Technological University, Waterford, Ireland; SSPC, The Research Ireland Centre for Pharmaceuticals, South East Technological University, Waterford, Ireland. Electronic address:

Article Synopsis
  • Co-amorphous systems (CAMs) can improve the solubility of poorly water-soluble drugs, but challenges like a limited number of co-formers and lab-scale preparation techniques exist.
  • This study uses aspartame and dipyridamole to create CAMs through spray drying, showing that AspPhe has better solid-state properties and physical stability than individual amino acids.
  • Molecular interactions analyzed by Hirshfeld Surface analysis and FT-IR spectroscopy demonstrate that hydrogen bond interactions significantly enhance the stability of the DPM-AspPhe co-amorphous system, while crystallization rates are affected by temperature and humidity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!