Dysfunction of Mitochondrial Dynamics in Model of Diabetic Nephropathy.

Life (Basel)

Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea.

Published: January 2021

Although mitochondrial dysfunction is associated with the development and progression of diabetic nephropathy (DN), its mechanisms are poorly understood, and it remains debatable whether mitochondrial morphological change is a cause of DN. In this study, a DN model was established by treating a chronic high-sucrose diet that exhibits similar phenotypes in animals. Results showed that flies fed a chronic high-sucrose diet exhibited a reduction in lifespan, as well as increased lipid droplets in fat body tissue. Furthermore, the chronic high-sucrose diet effectively induced the morphological abnormalities of nephrocytes in . High-sucrose diet induced mitochondria fusion in nephrocytes by increasing Opa1 and Marf expression. These findings establish as a useful model for studying novel regulators and molecular mechanisms for imbalanced mitochondrial dynamics in the pathogenesis of DN. Furthermore, understanding the pathology of mitochondrial dysfunction regarding morphological changes in DN would facilitate the development of novel therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831917PMC
http://dx.doi.org/10.3390/life11010067DOI Listing

Publication Analysis

Top Keywords

high-sucrose diet
16
chronic high-sucrose
12
mitochondrial dynamics
8
diabetic nephropathy
8
mitochondrial dysfunction
8
dysfunction mitochondrial
4
dynamics model
4
model diabetic
4
mitochondrial
4
nephropathy mitochondrial
4

Similar Publications

The Effects of Novel Co-Amorphous Naringenin and Fisetin Compounds on a Diet-Induced Obesity Murine Model.

Nutrients

December 2024

Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México 14080, Mexico.

Background/objective: In recent studies, it has been shown that dietary bioactive compounds can produce health benefits; however, it is not known whether an improvement in solubility can enhance their biological effects. Thus, the aim of this work was to study whether co-amorphous (CoA) naringenin or fisetin with enhanced solubility modify glucose and lipid metabolism, thermogenic capacity and gut microbiota in mice fed a high-fat, high-sucrose (HFSD) diet.

Methods: Mice were fed with an HFSD with or without CoA-naringenin or CoA-fisetin for 3 months.

View Article and Find Full Text PDF

Therapeutic Potential of Dimethyl Fumarate for the Treatment of High-Fat/High-Sucrose Diet-Induced Obesity.

Antioxidants (Basel)

December 2024

Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, bloco F, 3° floor, room 301, Cidade Universitária, Rio de Janeiro CEP 21941-902, RJ, Brazil.

Obesity is characterized by an imbalance between energy intake and expenditure that triggers abnormal growth of adipose tissues. Dimethyl fumarate (DMF) and its primary active metabolite, monomethyl fumarate (MMF), are Nrf2 activators and have been recognized as strategic antioxidants. This study aimed to evaluate the potential of MMF and DMF to interfere with adipogenesis and obesity, and identify the molecular mechanisms involved.

View Article and Find Full Text PDF

A dissociated glucocorticoid receptor modulator mitigates glucolipotoxicity in the endocrine pancreas and peripheral tissues: Preclinical data from a mouse model of diet-induced type 2 diabetes.

Life Sci

January 2025

Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina. Electronic address:

Aims: Type 2 diabetes (T2D) is a prevalent metabolic disease linked to obesity and metabolic syndrome (MS). The glucolipotoxic environment (GLT) impacts tissues causing low-grade inflammation, insulin resistance and the gradual loss of pancreatic β-cell function, leading to hyperglycemia. We have previously shown that Compound A (CpdA), a plant-derived dissociative glucocorticoid receptor-modulator with inflammation-suppressive activity, displays protective effects on β-cells in type 1 diabetes murine models.

View Article and Find Full Text PDF

Nonalcoholic Steatohepatitis (NASH) is a common liver disease with limited treatment options. Oxymatrine (OMT) has been reported to treat liver diseases effectively. This study aims to explore the mechanisms of OMT in NASH.

View Article and Find Full Text PDF

BRISC-Mediated PPM1B-K63 Deubiquitination and Subsequent TGF-β Pathway Activation Promote High-Fat/High-Sucrose Diet-Induced Arterial Stiffness.

Circ Res

January 2025

Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (H.J.).

Background: Metabolic syndrome heightens cardiovascular disease risk primarily through increased arterial stiffness. We previously demonstrated the involvement of YAP (Yes-associated protein) in high-fat/high-sucrose diet (HFHSD)-induced arterial stiffness via modulation of PPM1B (protein phosphatase Mg/Mn-dependent 1B)-lysine63 (K63) deubiquitination. In this study, we aimed to elucidate the role and mechanisms underlying PPM1B deubiquitination in HFHSD-induced arterial stiffness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!