Recent Advances in Three-Dimensional Multicellular Spheroid Culture and Future Development.

Micromachines (Basel)

State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.

Published: January 2021

Three-dimensional multicellular spheroids (MCSs) have received extensive attention in the field of biomedicine due to their ability to simulate the structure and function of tissues in vivo more accurately than traditional in vitro two-dimensional models and to simulate cell-cell and cell extracellular matrix (ECM) interactions. It has become an important in vitro three-dimensional model for tumor research, high-throughput drug screening, tissue engineering, and basic biology research. In the review, we first summarize methods for MCSs generation and their respective advantages and disadvantages and highlight the advances of hydrogel and microfluidic systems in the generation of spheroids. Then, we look at the application of MCSs in cancer research and other aspects. Finally, we discuss the development direction and prospects of MCSs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831097PMC
http://dx.doi.org/10.3390/mi12010096DOI Listing

Publication Analysis

Top Keywords

three-dimensional multicellular
8
advances three-dimensional
4
multicellular spheroid
4
spheroid culture
4
culture future
4
future development
4
development three-dimensional
4
multicellular spheroids
4
mcss
4
spheroids mcss
4

Similar Publications

Background: High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of all ovarian cancer-related deaths. Multiple studies have suggested that the fallopian tube epithelium (FTE) serves as the cell of origin of HGSOC. Phosphatase and tensin homolog () is a tumor suppressor and its loss is sufficient to induce numerous tumorigenic changes in FTE, including increased migration, formation of multicellular tumor spheroids (MTSs), and ovarian colonization.

View Article and Find Full Text PDF

3D-Printed Myocardium-Specific Structure Enhances Maturation and Therapeutic Efficacy of Engineered Heart Tissue in Myocardial Infarction.

Adv Sci (Weinh)

January 2025

Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Despite advancements in engineered heart tissue (EHT), challenges persist in achieving accurate dimensional accuracy of scaffolds and maturing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), a primary source of functional cardiac cells. Drawing inspiration from cardiac muscle fiber arrangement, a three-dimensional (3D)-printed multi-layered microporous polycaprolactone (PCL) scaffold is created with interlayer angles set at 45° to replicate the precise structure of native cardiac tissue. Compared with the control group and 90° PCL scaffolds, the 45° PCL scaffolds exhibited superior biocompatibility for cell culture and improved hiPSC-CM maturation in calcium handling.

View Article and Find Full Text PDF

Organ-on-a-chip: Quo vademus? Applications and regulatory status.

Colloids Surf B Biointerfaces

January 2025

Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal. Electronic address:

Article Synopsis
  • Organ-on-a-chip systems (or microphysiological systems) are advanced bioengineering tools designed to replicate human organ functions, boosting drug discovery and providing insights into disease.
  • These systems create 3D environments that can mimic specific human tissues and disease states, allowing researchers to study drug responses, safety, and disease progression more effectively.
  • They also hold future potential for personalized medicine by simulating the unique physiological responses of individual patients, guiding treatment strategies for better health outcomes.
View Article and Find Full Text PDF

Protocol for the Generation and 3D Culture of Fluorescently Labeled Multicellular Spheroids.

Methods Mol Biol

January 2025

Department of Internal Medicine II, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany.

Spheroid culture systems have been extensively used to model the three-dimensional (3D) behavior of cells in vitro. Traditionally, spheroids consist of a single cell type, limiting their ability to fully recapitulate the complex inter-cellular interactions observed in vivo. Here we describe a protocol for generating cocultured spheroids composed of two distinct cell types, embedded within a 3D extracellular matrix (ECM) to better study cellular interactions.

View Article and Find Full Text PDF

The electron cryomicroscopy (cryo-EM) resolution revolution has shifted structural biology into a new era, enabling the routine structure determination of macromolecular complexes at an unprecedented rate. Building on this, electron cryotomography (cryo-ET) offers the potential to visualise the native three-dimensional organisation of biological specimens, from cells to tissues and even entire organisms. Despite this huge potential, the study of tissue-like multicellular specimens via cryo-ET still presents numerous challenges, wherein many steps in the workflow are being developed or in urgent need of improvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!