Multidrug-resistant (MDR) bacteria are increasing due to the abuse and misuse of antibiotics, and nosocomial infections by MDR bacteria are also increasing. The aim of this study was to identify new substances that can target MDR bacteria among 12 plant extracts that are known to have antibacterial effects. The experiments were performed by the disk diffusion test and microdilution minimum inhibitory concentration (MIC) test, as described by the Clinical and Laboratory Standards Institute (CLSI). By screening against methicillin-sensitive (MSSA), grapefruit seed extract (GSE) was selected from 12 plant extracts for subsequent experiments. GSE showed antibacterial effects against methicillin-resistant (MRSA) and vancomycin-resistant (VRSA) in the disk diffusion test. Even at the lowest concentration, GSE showed antibacterial activity in the microdilution MIC test. As a result, we can conclude that GSE is a naturally derived antibacterial substance that exhibits a favorable antibacterial effect even at a very low concentration, so it is a good candidate for a natural substance that can be used to prevent or reduce nosocomial infections as coating for materials used in medical contexts or by mixing a small amount with other materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830962 | PMC |
http://dx.doi.org/10.3390/antibiotics10010085 | DOI Listing |
Sci Rep
January 2025
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
Antimicrobial resistance (AMR) is a major cause of death worldwide, with 1.27 M direct deaths from bacterial drug-resistant infections as of 2019. Dissemination of multidrug-resistant (MDR) bacteria in the environment, in conjunction with pharmapollution by active pharmaceutical ingredients (APIs), create and foster an environmental reservoir of AMR.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy.
After allogeneic HSCT (allo-HSCT), the diversity of the intestinal microbiota significantly decreases. The changes can be rapid and are thought to be caused by chemotherapy, antibiotics, or intestinal inflammation. Most patients are exposed to prophylactic and therapeutic antibiotics during neutropenia and several patients are colonized by ESBL bacteria.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan. Electronic address:
Multi-drug resistant (MDR) Acinetobacter baumannii causes nosocomial infections due to a plethora of virulence determinants like biofilm formation which are pivotal to its survival and pathogenicity. Hence, investigation of these mechanisms in currently circulating strains is required for effective infection control and drug development. This study investigates the prevalence of antibiotic resistance and virulence factors and their relationship with biofilm formation in Acinetobacter baumannii strains in Karachi, Pakistan.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Microbiology, Hind Institute of Medical Sciences, Mau, Ataria, Sitapur, Uttar Pradesh, India, 261303.
Methicillin-resistant Staphylococcus aureus (MRSA) continues to pose significant challenges in healthcare settings due to its multi-drug resistance (MDR) and virulence. This retrospective study examines the molecular and resistance profiles of MRSA isolates from a tertiary care hospital in Saudi Arabia, providing valuable insights into regional epidemiology. A total of 190 MRSA strains were analysed to assess antimicrobial susceptibility, genetic diversity, and virulence factors.
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2025
Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
Unlabelled: This Phase 1 trial described the intrapulmonary pharmacokinetics and safety profile of IV fosfomycin in healthy participants Fosfomycin, a broad-spectrum antibiotic mainly used to treat urinary tract infections, is being considered for treatment of more complex conditions, including lung infections, due to the emergence of multidrug-resistant (MDR) organisms. Despite its potential, the pharmacokinetics and safety profile of intravenous (IV) fosfomycin, particularly its penetration into the lower respiratory tract, are unknown. To address this gap, we conducted a Phase 1, open-label trial to assess the safety and pulmonary pharmacokinetics of IV fosfomycin in healthy participants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!