Genetic engineering of a bacteriophage is a promising way to develop a highly functional biosensor. Almost countless configurational degree of freedom in the manipulation, considerable uncertainty and cost involved with the approach, however, have been huddles for the objective. In this paper, we demonstrate rapidly responding optical biosensor with high selectivity toward gaseous explosives with genetically engineered phages. The sensors are equipped with peptide sequences in phages optimally interacting with the volatile organic compounds (VOCs) in visible light regime. To overcome the conventional issues, we use extensive utilization of empirical calculations to construct a large database of 8000 tripeptides and screen the best for electronic nose sensing performance toward nine VOCs belonging to three chemical classes. First-principles density functional theory (DFT) calculations unveil underlying correlations between the chemical affinity and optical property change on an electronic band structure level. The computational outcomes are validated by in vitro experimental design and testing of multiarray sensors using genetically modified phage implemented with five selected tripeptide sequences and wild-type phages. The classification success rates estimated from hierarchical cluster analysis are shown to be very consistent with the calculations. Our optical biosensor demonstrates a 1 ppb level of sensing resolution for explosive VOCs, which is a substantial improvement over conventional biosensor. The systematic interplay of big data-based computational prediction and in situ experimental validation can provide smart design principles for unconventionally outstanding biosensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2021.112979 | DOI Listing |
Anal Chim Acta
February 2025
Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan. Electronic address:
Background: Ambient ionization mass spectrometry (MS) has attracted significant attention due to its simplicity and ease of operation. Contactless, or field-induced, ionization is one of the ambient ionization techniques. In this approach, no direct electrical contact or additional voltage is required on the ionization-assisted substrate.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454003, China. Electronic address:
Background: Trimethylamine (TMA) is a colorless, volatile gas with a strong irritating odor. Prolonged exposure to a certain amount of TMA can cause symptoms such as dizziness, nausea and difficulty breathing, and may even be life-threatening. Therefore, effective detection of TMA is crucial.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, 13084-971, SP, Brazil. Electronic address:
Background: Distinct classes of environmental contaminants - such as microplastics, volatile organic compounds, inorganic gases, hormones, pesticides/herbicides, and heavy metals - have been continuously released into the environment from different sources. Anthropogenic activities with unprecedented consequences have impacted soil, surface waters, and the atmosphere. In this scenario, developing sensing materials and analytical platforms for monitoring water and air quality is essential to supporting worldwide environmental control agencies.
View Article and Find Full Text PDFFood Chem
January 2025
Shandong Academy of Grape, Shandong, Academy of Agricultural Sciences, Jinan 250100, China. Electronic address:
Grapevine white rot is a fungal disease that frequently occurs during the growing season, resulting in reduced fruit quality and severe yield losses. This work aimed to compare the differences in flavor profiles between wines made from different percentages of Coniella vitis-infected grapes by using FTIR spectrometer, sensory analysis, HS-SPME-GC-MS and HPLC-DAD. C.
View Article and Find Full Text PDFChemosphere
January 2025
Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
Peroxyacetyl Nitrate (CHC(O)ONO, PAN), a typical secondary product of photochemical reactions, is well known to be a better photochemical indicator due to the only secondary photochemical source in the troposphere. Studies on PAN pollution are sparse in northwest China, resulting in a limited understanding of photochemical pollution in recent years. Herein, the measurement of PAN, O, volatile organic compounds (VOCs), NO, other related species, and meteorological parameters were conducted from May 1 to August 31, 2022, at an urban site in Lanzhou.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!