New substituted quinoline derivatives were designed and synthesized via a five-step modified Suzuki coupling reaction. A comparative molecular docking study was carried out on two different types of EGFR enzymes which include wild-type (PDB: 4I23) and T790M mutated (PDB: 2JIV) respectively. Compounds were also validated upon T790M/C797S mutated (PDB ID: 5D41) EGFR enzyme at the allosteric binding site. All docking studies confirmed high potency and flexibility towards wild type as well as a mutated enzyme. Anticancer activity of the synthesized derivatives was examined against HCC827, H1975 (L858R/T790M/C797S and L858R/T790M), A549, and HT-29 cell lines by standard MTT assay. Most of the quinoline derivatives revealed a significant cytotoxic effect. The IC50 values of 4-(4-methylquinolin-2-yl)phenyl 4-(chloromethyl)benzoate (5j) were found to be 0.0042 µM, 0.02 µM, 1.91 µM, 3.82 µM and 3.67 µM while IC50 values of osimertinib were 0.0040 µM, 0.02 µM, ND, 0.99 µM and 1.22 µM, respectively. Compound 5j has shownexcellent inhibitory activities against EGFR kinases triple mutant with IC 50 value 1.91 µM. It was observed that, compared to H1975, A549 and A431 cell lines, synthesized compounds significantly inhibited proliferation of the HCC827 cell line. These data suggested that synthesized compounds showed promising selective anticancer activity against tumor cells harboring EGFR Del E746-A750. The potency of compound 5j was compared through molecular dynamic simulations andan insilicoADMET study. QSAR models were generated and the best model was correctly compared with respect to predicted and observed activity of compounds. The built model will assist to design, refine and construct novel substituted quinoline derivatives as potent EGFR inhibitors in near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2020.104612 | DOI Listing |
Org Lett
January 2025
School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
The translocation of an aryl group from selenium into carbon enabled by the cleavage of the C-Se bond is reported by using nitrogen atom-linked 1,7-diynes and diaryl diselenides as starting materials, leading to various selenophene derivatives in a regioselective manner. This method enables the construction of two C-Se bonds and two C-C bonds through sequential radical bicyclization and 1,2-aryl migration under metal-free conditions. Control experiments and mechanistic studies suggest that this reaction proceeds through the cleavage of the inert C(Ph)-Se bond, facilitating the aryl translocation process.
View Article and Find Full Text PDFRSC Adv
January 2025
The Organic Chemistry Research Laboratory (OCRL), Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
In recent research, quinoline and indole structures have gained recognition for their significant clinical relevance and effectiveness. These compounds are known for their wide-ranging pharmacological effects, which include anticancer, antibacterial, antifungal, antiviral, and anti-inflammatory properties. Researchers have successfully implemented a variety of innovative synthetic strategies, leading to the creation of numerous compounds that display fascinating biological activities in diverse fields.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of General Surgery, the Second Xiang-Ya Hospital, Central South University, Changsha 410011 China. Electronic address:
The transforming growth factor β (TGF-β) type 1 receptor (ALK5) plays a key role in tumor microenvironment. Small-molecule inhibitors of TGFβR1 provides a prospective approach for the treatment of malignant tumors. In this study, a series of 4-((3-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-4-yl)oxy)quinoline derivatives were identified as novel, potential TGFβR1 inhibitors.
View Article and Find Full Text PDFJ Med Chem
January 2025
Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India.
The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:
Ofloxacin (OFX), commonly employed in the treatment of infectious diseases, is frequently detected in aquatic environments and poses potential ecological risks. UV/HO oxidation has been recognized as an efficient approach for removing antibiotics. In this study, Cu-doped waste-tire carbon was prepared and used as a UV/HO catalyst for the degradation of OFX.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!