New substituted quinoline derivatives were designed and synthesized via a five-step modified Suzuki coupling reaction. A comparative molecular docking study was carried out on two different types of EGFR enzymes which include wild-type (PDB: 4I23) and T790M mutated (PDB: 2JIV) respectively. Compounds were also validated upon T790M/C797S mutated (PDB ID: 5D41) EGFR enzyme at the allosteric binding site. All docking studies confirmed high potency and flexibility towards wild type as well as a mutated enzyme. Anticancer activity of the synthesized derivatives was examined against HCC827, H1975 (L858R/T790M/C797S and L858R/T790M), A549, and HT-29 cell lines by standard MTT assay. Most of the quinoline derivatives revealed a significant cytotoxic effect. The IC50 values of 4-(4-methylquinolin-2-yl)phenyl 4-(chloromethyl)benzoate (5j) were found to be 0.0042 µM, 0.02 µM, 1.91 µM, 3.82 µM and 3.67 µM while IC50 values of osimertinib were 0.0040 µM, 0.02 µM, ND, 0.99 µM and 1.22 µM, respectively. Compound 5j has shownexcellent inhibitory activities against EGFR kinases triple mutant with IC 50 value 1.91 µM. It was observed that, compared to H1975, A549 and A431 cell lines, synthesized compounds significantly inhibited proliferation of the HCC827 cell line. These data suggested that synthesized compounds showed promising selective anticancer activity against tumor cells harboring EGFR Del E746-A750. The potency of compound 5j was compared through molecular dynamic simulations andan insilicoADMET study. QSAR models were generated and the best model was correctly compared with respect to predicted and observed activity of compounds. The built model will assist to design, refine and construct novel substituted quinoline derivatives as potent EGFR inhibitors in near future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2020.104612DOI Listing

Publication Analysis

Top Keywords

quinoline derivatives
16
substituted quinoline
12
triple mutant
8
egfr inhibitors
8
mutated pdb
8
anticancer activity
8
cell lines
8
ic50 values
8
synthesized compounds
8
egfr
6

Similar Publications

Radical-Triggered Bicyclization and Aryl Migration of 1,7-Diynes with Diphenyl Diselenide for the Synthesis of Selenopheno[3,4-]quinolines.

Org Lett

January 2025

School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.

The translocation of an aryl group from selenium into carbon enabled by the cleavage of the C-Se bond is reported by using nitrogen atom-linked 1,7-diynes and diaryl diselenides as starting materials, leading to various selenophene derivatives in a regioselective manner. This method enables the construction of two C-Se bonds and two C-C bonds through sequential radical bicyclization and 1,2-aryl migration under metal-free conditions. Control experiments and mechanistic studies suggest that this reaction proceeds through the cleavage of the inert C(Ph)-Se bond, facilitating the aryl translocation process.

View Article and Find Full Text PDF

In recent research, quinoline and indole structures have gained recognition for their significant clinical relevance and effectiveness. These compounds are known for their wide-ranging pharmacological effects, which include anticancer, antibacterial, antifungal, antiviral, and anti-inflammatory properties. Researchers have successfully implemented a variety of innovative synthetic strategies, leading to the creation of numerous compounds that display fascinating biological activities in diverse fields.

View Article and Find Full Text PDF

The transforming growth factor β (TGF-β) type 1 receptor (ALK5) plays a key role in tumor microenvironment. Small-molecule inhibitors of TGFβR1 provides a prospective approach for the treatment of malignant tumors. In this study, a series of 4-((3-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-4-yl)oxy)quinoline derivatives were identified as novel, potential TGFβR1 inhibitors.

View Article and Find Full Text PDF

Design and Synthesis of Topoisomerases-Histone Deacetylase Dual Targeted Quinoline-Bridged Hydroxamates as Anticancer Agents.

J Med Chem

January 2025

Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India.

The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential.

View Article and Find Full Text PDF

Cu-doped waste-tire carbon as catalyst for UV/HO oxidation of ofloxacin.

J Environ Manage

January 2025

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:

Ofloxacin (OFX), commonly employed in the treatment of infectious diseases, is frequently detected in aquatic environments and poses potential ecological risks. UV/HO oxidation has been recognized as an efficient approach for removing antibiotics. In this study, Cu-doped waste-tire carbon was prepared and used as a UV/HO catalyst for the degradation of OFX.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!