Landfill sites are regarded as sources of volatile compounds (VOCs) and odors emitted to the atmosphere. Surface emissions of VOCs and odors were investigated in a rural domestic waste landfill site located in southwest China. A total of 76 chemical compounds belonging to 3 chemical families were identified and quantified. The total number of VOCs (TVOC) detected ranged from 18.1 to 806.3 mg/m, while odorous gases and greenhouse gases ranged from 0.4 to 21.2 and 0-100.5 mg/m, respectively. High emissions were found in the air surrounding the leachate storage pool (LSP) and dumping area (DPA). The dominant species of VOCs were hexaldehyde, m-xylene, propylene oxide, acetophenone, and 2-butanone. The traceability analysis showed that the odors and VOCs diffused to the downwind boundary mainly came from the DPA and LSP. According to the olfactory effect analysis and cancer risk assessment, the main odor-causing gaseous pollutants were hydrogen sulfide, propionic acid, styrene, and 2-pentanone, while benzene, trichlorethylene, and 1,3-butadiene were the dominant carcinogens. This study provides new insights into the emission characteristics, olfactory effects, and cancer risks of VOCs and odors emitted from rural domestic solid waste landfill sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.129582DOI Listing

Publication Analysis

Top Keywords

waste landfill
12
vocs odors
12
volatile compounds
8
domestic waste
8
landfill site
8
cancer risk
8
landfill sites
8
odors emitted
8
rural domestic
8
vocs
6

Similar Publications

Per- and polyfluoroalkyl substances (PFAS) are present in a variety of products that are disposed in landfills as waste and end up in landfill leachate which cause severe problems. The primary aim of this study was to detect PFAS in generated leachate in different sections of a process and disposal complex (called Aradkuh) located in Tehran, Iran. Due to techno economic limitations of measuring PFAS in Iran and easiness of measuring physicochemical parameters to determine PFAS concentration as well as better understanding of the mechanisms of these substances releases from landfills, this research aimed to evaluate the potential relationship between these parameters in landfill leachate.

View Article and Find Full Text PDF

Municipal solid waste (MSW) landfills represent underexplored microbial ecosystems. Landfills contain variable amounts of antibiotic and construction and demolition (C&D) wastes, which have the potential to alter microbial metabolism due to biocidal or redox active components, and these effects are largely underexplored. To circumvent the challenge of MSW heterogeneity, we conducted a 65-day time series study on simulated MSW microcosms to assess microbiome changes using 16S rRNA sequencing in response to 1) Fe(OH)3 and 2) Na2SO4 to represent redox active components of C&D waste as well as 3) antibiotics.

View Article and Find Full Text PDF

Background: Lebanon is grappling with numerous environmental challenges, including water scarcity, landfill waste, deforestation, and rising air pollution. Food choices significantly influence global greenhouse gas emissions and environmental impacts, making it crucial to evaluate the environmental footprints (EFPs) of Lebanon's current dietary habits. This study aimed to assess food consumption patterns and their EFPs among a nationally representative sample of Lebanese adults.

View Article and Find Full Text PDF

This study introduces a novel landfill cover material, employing lake sediment as a substrate, stabilised with fly ash, slag, desulfurisation gypsum and construction waste. The mechanical properties, including shear strength parameters, unconfined compressive strength, hydraulic conductivity, volumetric shrinkage, and water content, of the solidified sludge were evaluated. The microscopic mechanism of the solidified sludge were investigated through XRD, FTIR, and SEM-EDS techniques.

View Article and Find Full Text PDF

Insect farming: A bioeconomy-based opportunity to revalorize plastic wastes.

Environ Sci Ecotechnol

January 2025

Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.

Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!