We report full-dimensional and fully coupled quantum bound-state calculations of the = 0, 1 intra- and intermolecular rovibrational states of the isotopically asymmetric HDO-CO complex. They are performed on the nine-dimensional (9D) potential energy surface (PES) [Liu, Y.; Li, J. 2019, 21, 24101]. The present study complements our earlier theoretical investigation of the 9D rovibrational level structure of the HO-CO and DO-CO complexes [Felker, P. M.; Bačić, Z. 2020, 153, 074107]. What distinguishes HDO-CO is that, unlike the two isotopically symmetric isotopologues, it does not display hydrogen-interchange tunneling but has two distinct isomers, the lower-energy D-bonded HOD-CO and the higher-energy H-bonded DOH-CO. The highly efficient methodology employed in the present calculations derives from our earlier study referenced above, taking into account the lower symmetry of HDO-CO. The full 9D rovibrational Hamiltonian is partitioned into three reduced-dimension Hamiltonians: the 5D rigid-monomer intermolecular vibrational Hamiltonian and two intramolecular vibrational Hamiltonians, one for the HDO monomer (3D) and another for the CO monomer (1D), and a 9D remainder term. The reduced-dimension Hamiltonians are diagonalized separately, and small portions of their low-energy eigenstates are incorporated in the compact final 9D product contracted basis covering all internal, intra- and intermolecular degrees of freedom of the complex. The 9D rovibrational Hamiltonian is diagonalized in this fully contracted basis. The calculations show that the eigenstates belonging to the D-bonded and H-bonded isomers, designated as and , respectively, are easy to identify, owing to the near-complete localization of their wave functions in either of the two minima on the PES. The computed intramolecular vibrational frequencies of the two monomers are either blue- or red-shifted, depending on the mode. The excitations of the intramolecular vibrational modes affect the energies of the low-lying and intermolecular vibrational states in the respective intramolecular manifolds. Comparison is made with the experimental data available in the literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.0c10320 | DOI Listing |
Chemistry
January 2025
Shibaura Institute of Technology: Shibaura Kogyo Daigaku, Applied Chemistry, Fukasaku 307, Minuma-ku, 337-8570, Saitama, JAPAN.
A new Donor-Acceptor type pyrazinacene derivative (1) featuring strong ICT was synthesized by linking electron-donating triphenylamine (TPA) and electron-accepting CN groups via a pyrazinacene core. The compound exhibits a dramatic color change from greenish blue to red-violet upon selective recognition of naphthalene (3) to form a 1:1 co-crystal (1•3). This color change is induced by intermolecular CT between pyrazinacene and naphthalene's aromatic moieties, driven by π-hole···π interactions.
View Article and Find Full Text PDFChem Biodivers
January 2025
Universidad Nacional de Tucuman Facultad de Bioquimica Quimica y Farmacia, Chemistry, Av. Kirchner 1900, 4000, San Miguel de Tucumán, ARGENTINA.
(Z)-3-butylamino-4,4,4-trifluoro-1-(2-hydroxyphenyl)but-2-en-1-one (1), a new β-aminoenone, has been investigated in terms of its intra- and intermolecular interactions. Vibrational, electronic and NMR spectroscopies were used for the characterization, while X-ray diffraction methods afforded the determination of the crystal structure. The compound is arranged in the crystal lattice as centre-symmetric H-bonded dimeric aggregates (C2/c monoclinic space group).
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Saint-Petersburg State Institute of Technology, Technical University, 190013 Saint Petersburg, Russia.
New aromatic co-polyamide-imides (coPAIs) containing both carboxyl and hydroxyl groups in the repeating units were synthesized for the first time. Transport, thermal and morphological properties of dense nonporous membranes from PAIs obtained using the diacid chloride of 2-(4-carboxyphenyl)-1,3-dioxoisoindoline-5-carboxylic acid and diamines 5,5'-methylene-bis (2-aminophenol)) and 3,5-Diaminobenzoic acid, taken in molar ratios of 7:3, 1:1, and 3:7, have been studied. High levels of membrane permeability accompanied by high selectivity for mixtures of liquids with significantly different polarities were determined by realization of intra- and intermolecular interactions in polymer, which was proved by thermal analyses and hydrodynamic characteristics of coPAIs.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
Two-dimensional (2D) vibrational spectroscopy is a powerful means of investigating the structure and dynamics of complex molecules in condensed phases. However, even in theory, analysis of 2D spectra resulting from complex inter- and intra-molecular motions using only molecular dynamics methods is not easy. This is because molecular motions comprise complex multiple modes and peaks broaden and overlap owing to various relaxation processes and inhomogeneous broadening.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States.
Injectable biomaterials play a vital role in modern medicine, offering tailored functionalities for diverse therapeutic and diagnostic applications. In ophthalmology, for instance, viscoelastic materials are crucial for procedures such as cataract surgery but often leave residues, increasing postoperative risks. This study introduces injectable fluorescent viscoelastics (FluoVs) synthesized via one-step controlled radical copolymerization of oligo(ethylene glycol) acrylate and fluorescein acrylate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!