This proof-of-concept study sought to determine the effects of standard of care (SOC) and a topically applied concentrated surfactant gel (SG) on the total microbial load, community composition, and community diversity in non-healing diabetic foot ulcers (DFUs) with chronic biofilm infections. SOC was provided in addition to a topical concentrated SG, applied every 2 days for 6 weeks. Wound swabs were obtained from the base of ulcers at baseline (week 0), week 1, mid-point (week 3), and end of treatment (week 6). DNA sequencing and real-time quantitative polymerase chain reaction (qPCR) were employed to determine the total microbial load, community composition, and diversity of patient samples. Tissue specimens were obtained at baseline and scanning electron microscopy and peptide nucleic acid fluorescent in situ hybridisation with confocal laser scanning microscopy were used to confirm the presence of biofilm in all 10 DFUs with suspected chronic biofilm infections. The application of SG resulted in 7 of 10 samples achieving a reduction in mean log10 total microbial load from baseline to end of treatment (0.8 Log10 16S copies, ±0.6), and 3 of 10 samples demonstrated an increase in mean Log10 total microbial load (0.6 log10 16S copies, ±0.8) from baseline to end of treatment. Composition changes in microbial communities were driven by changes to the most dominant bacteria. Corynebacterium sp. and Streptococcus sp. frequently reduced in relative abundance in patient samples from week 0 to week 6 but did not disappear. In contrast, Staphylococcus sp., Finegoldia sp., and Fusobacterium sp., relative abundances frequently increased in patient samples from week 0 to week 6. The application of a concentrated SG resulted in varying shifts to diversity (increase or decrease) between week 0 and week 6 samples at the individual patient level. Any shifts in community diversity were independent to changes in the total microbial loads. SOC and a topical concentrated SG directly affect the microbial loads and community composition of DFUs with chronic biofilm infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273583 | PMC |
http://dx.doi.org/10.1111/iwj.13546 | DOI Listing |
Pol J Vet Sci
June 2024
Department of Surgery, Faculty of Veterinary Medicine, University of Siirt, Kezer Campus, Veysel Karani District, University Street, Siirt/Türkiye.
In this study, a total of 32 Trueperella pyogenes strains isolated from different disease specimens in cattle, sheep and goats were examined. Antimicrobial susceptibility of the isolates to 10 antimicrobials were determined using the E-test method and MIC values of the antimicrobials were investigated. The genes that play a role in the antimicrobial resistance or virulence of T.
View Article and Find Full Text PDFPol J Vet Sci
December 2024
Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 04181, Slovakia.
The present study aimed to search for the presence of the plasmid-mediated antimicrobial resistance genes in 106 Escherichia coli (E. coli) isolates from a total of 240 fresh fecal samples collected from 12 private cattle farms in Bingol province of East Turkey from November 2021 to January 2022. In those colistin-resistant E.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
December 2024
Polytechnic School, University of Vale do Itajaí (Univali), Itajaí, SC 88302-202, Brazil.
Background: Enhanced biological phosphorus removal (EBPR) systems utilize phosphorus-accumulating organisms (PAOs) to remove phosphorus from wastewater since excessive phosphorus in water bodies can lead to eutrophication. This study aimed to characterize a newly isolated PAO strain for its potential application in EBPR systems and to screen for additional biotechnological potential. Here, sequencing allowed for genomic analysis, identifying the genes and molecules involved, and exploring other potentials.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
December 2024
Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, 4000 Durban, South Africa.
Background: () is the most prominent bacterial pathogen that causes urinary tract infections (UTIs), and the rate of resistance to most used antibiotics is alarmingly increasing.
Methods: This study assessed the hostel gutters of two Nigerian universities, the University of Nigeria, Nsukka (UNN) and Kogi State University, Anyigba (KSU), for and its antimicrobial resistance genes (). Oxoid Chromogenic UTI agar was used to isolate uropathogenic (UPEC), identified using standard biochemical tests.
PeerJ
December 2024
Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde City, Hebei Province, China.
Rhizosphere microorganisms are important factors affecting herb quality and secondary metabolite accumulation. In this study, we investigated the diversity of rhizosphere microbial communities (bacteria and fungi) and their correlations with soil physicochemical properties and active compounds of (baicalin, oroxindin, baicalein, wogonin, and oroxylin A) from cultivated with three different origins high-throughput sequencing and correlation analysis to further clarify the role of soil factors in the accumulation of the active compounds of . The results are summarized as follows.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!