Hair cell loss is the leading cause of hearing and balance disorders in humans. It can be caused by many factors, including noise, aging, and therapeutic agents. Previous studies have shown the therapeutic potential of quinoxaline against drug-induced ototoxicity. Here, we screened a library of 68 quinoxaline derivatives for protection against aminoglycoside-induced damage of hair cells from the zebrafish lateral line. We identified quinoxaline-5-carboxylic acid (Qx28) as the best quinoxaline derivative that provides robust protection against both aminoglycosides and cisplatin in zebrafish and mouse cochlear explants. FM1-43 and aminoglycoside uptake, as well as antibiotic efficacy studies, revealed that Qx28 is neither blocking the mechanotransduction channels nor interfering with aminoglycoside antibacterial activity, suggesting that it may be protecting the hair cells by directly counteracting the ototoxin's mechanism of action. Only when animals were incubated with higher doses of Qx28 did we observe a partial blockage of the mechanotransduction channels. Finally, we assessed the regulation of the NF-κB pathway in vitro in mouse embryonic fibroblasts and in vivo in zebrafish larvae. Those studies showed that Qx28 protects hair cells by blocking NF-κB canonical pathway activation. Thus, Qx28 is a promising and versatile otoprotectant that can act across different species and toxins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8021103 | PMC |
http://dx.doi.org/10.1172/jci.insight.141561 | DOI Listing |
Stem Cell Rev Rep
January 2025
Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
Dermatologists have been interested in recent advancements in regenerative therapy. Current research is actively investigating the possibility of placental tissue derivatives to decelerate the skin aging process, enhance skin regeneration, reduce scarring, and prevent hair loss. Amniotic membranes (AM) play a crucial role in regenerative medicine as they serve as a suitable means of transporting stem cells, growth hormones, cytokines, and other essential compounds.
View Article and Find Full Text PDFActa Dermatovenerol Croat
November 2024
Takayuki Suyama, MD, PhD, Department of Dermatology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minami-koshigaya, Koshigaya, Saitama, 343-8555, Japan; ORCID ID: 0000-0002-6986-411X.
Cystic basal cell carcinoma (BCC) is a rare subtype of BCC (1). Histologically, it is usually characterized by multiple small cysts without a clinical cystic appearance (2). Herein, we report an unusual case of cystic BCC with a large vulvar cyst.
View Article and Find Full Text PDFRegen Ther
March 2025
Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China.
Background: Secreted frizzled-related protein 1 (SFRP1) inhibits Wnt signaling and is differentially expressed in human hair dermal papilla cells (DPCs). However, the specific effect of SFRP1 on cell function remains unclear. Telomerase reverse transcriptase (TERT) representing telomerase activity was found highly active around the hair dermal papilla.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Eye School of Chengdu University of Traditional Chinese Medicine. Ineye Hospital of Chengdu University of Traditional Chinese Medicine, KeyLaboratory of Sichuan Province Ophthalmopathy Prevention & Cureand Visual Function Protection with Traditional Chinese Medicine Laboratory. Electronic address:
Ethnopharmacological Relevance: Dahuang-Gancao decoction (DGD) is a traditional Chinese medicinal formula that is recorded in the Synopsis of the Golden Chamber, and is widely used to treat damp-heat in the body. Since the pathological factors of androgenetic alopecia (AGA) also reflect damp-heat blockage, DGD has great potential for the treatment of AGA and has been used effectively in clinical practice.
Aim Of The Study: The aim of the study was to investigate whether external application of DGD could promote the activation and proliferation of hair follicle stem cells (HFSCs) and improve AGA through the Wnt/β-catenin pathway.
Cell Mol Life Sci
January 2025
Department of Anesthesiology, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, China.
Hair follicle (HF) development and pigmentation are complex processes governed by various signaling pathways, such as TGF-β and FGF signaling pathways. Nestin + (neural crest like) stem cells are also expressed in HF stem cells, particularly in the bulge and dermal papilla region. However, the specific role and differentiation potential of these Nestin-positive cells within the HF remain unclear, especially regarding their contribution to melanocyte formation and hair pigmentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!