Additive-Free and Support-Free 3D Printing of Thermosetting Polymers with Isotropic Mechanical Properties.

ACS Appl Mater Interfaces

Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States of America.

Published: February 2021

The democratization of thermoplastic 3D printing is rooted in the ease of processing enabled by economical melting and shaping. Thermosetting polymers, on the other hand, have not enjoyed this advantage given that thermosetting resins cannot hold their shape without cross-linking or excessive fillers, and once cross-linked, they cannot be extruded for printing. Due to this formidable challenge, thus far, 3D printing of thermosetting polymers has been limited to the photopolymerization of specialized photosensitive resins or extrusion of resins loaded with large fractions (as high as 20 wt %) of rheology modifiers. Here, we report a rheology-modifier- and photoinitiator-free process for the 3D printing of a pure commercial epoxy polymer, without any resin modification and using a conventional 3D printer. A low-cost non-Newtonian support material that switches between solid-fluid states under a nozzle shear stress enables the printing of complex 3D structures and the subsequent and ″one-step″ curing. Our results show that the one-step curing eliminates the often-compromised interlayer adhesion common in layer-by-layer 3D printing processes and results in unprecedented isotropic mechanical properties (strength, elastic modulus, tensile toughness, and strain to failure). This in-bath print and cure (IBPC) 3D printing process for thermosetting polymers is low-cost, scalable, high-speed (nozzle speeds exceeding 720 cm/min), and high-resolution (down to 220 μm filament size). We demonstrate potential applications for hobbyists, structural and aerospace components, and fiber-reinforced composites, among others.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c19608DOI Listing

Publication Analysis

Top Keywords

thermosetting polymers
16
printing
8
printing thermosetting
8
isotropic mechanical
8
mechanical properties
8
thermosetting
5
additive-free support-free
4
support-free printing
4
polymers
4
polymers isotropic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!