The kidney plays a major role in maintaining body pH homeostasis. Renal pH, in particular, changes immediately following injuries such as intoxication and ischemia, making pH an early biomarker for kidney injury before the symptom onset and complementary to well-established laboratory tests. Because of this, it is imperative to develop minimally invasive renal pH imaging exams and test pH as a new diagnostic biomarker in animal models of kidney injury before clinical translation. Briefly, iodinated contrast agents approved by the US Food and Drug Administration (FDA) for computed tomography (CT) have demonstrated promise as novel chemical exchange saturation transfer (CEST) MRI agents for pH-sensitive imaging. The generalized ratiometric iopamidol CEST MRI analysis enables concentration-independent pH measurement, which simplifies in vivo renal pH mapping. This chapter describes quantitative CEST MRI analysis for preclinical renal pH mapping, and their application in rodents, including normal conditions and acute kidney injury.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concepts and experimental procedure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9703203 | PMC |
http://dx.doi.org/10.1007/978-1-0716-0978-1_40 | DOI Listing |
NMR Biomed
February 2025
Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
Asymmetry is a natural characteristic of Parkinson's disease (PD), which can be used to distinguish PD from atypical parkinsonism. Chemical exchange saturation transfer (CEST) has demonstrated value in reflecting the subtle changes related to neuron loss and abnormal protein accumulation in PD but has not been used to investigate asymmetry in PD. This study aimed to examine asymmetrical changes in the mesencephalic nucleus of PD patients with motor asymmetry using four-pool CEST analysis and to explore the relationship between imaging asymmetry and motor asymmetry.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
December 2024
Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
This study presents the first in vivo measurement of transcytolemmal water exchange in the brain using a novel Magnetic Resonance technique. We extend previous applications of Chemical Exchange Saturation Transfer (CEST) to examine water exchange across cellular membranes in late-stage chicken embryo brains. The immature blood-brain barrier at this stage allows Gadolinium-Based Contrast Agents (GBCAs) to penetrate the brain's interstitial space, sensitizing the CEST effect to water exchange between intra- and extracellular environments.
View Article and Find Full Text PDFEur Radiol
December 2024
Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
Objectives: Chemical exchange saturation transfer (CEST) imaging has emerged as a promising imaging biomarker, but its reliability for clinical practice remains uncertain. This study aimed to investigate the robustness of CEST parameters in healthy volunteers and patients with brain tumours.
Methods: A total of n = 52 healthy volunteers and n = 52 patients with histologically confirmed glioma underwent two consecutive 3-T MRI scans separated by a 1-min break.
J Magn Reson
December 2024
Non-Human-Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States. Electronic address:
Chemical exchange saturation transfer (CEST) MRI has become increasingly utilized for detecting dilute labile protons and characterizing microenvironment properties. However, the CEST MRI effect is only a few percent, and there is a need for a systematic approach to optimize scan parameters for sensitive and accurate CEST quantification. We propose multi-dimensional adjustments of key parameters such as the repetition time (TR) and RF duty cycle to optimize CEST MRI sensitivity per unit of time and utilization of quasi-steady-state (QUASS) reconstruction to recover the full CEST effect during postprocessing.
View Article and Find Full Text PDFTheranostics
December 2024
Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.
While obesity has been linked to both increased and decreased rate of cognitive decline in Alzheimer's Disease (AD) patients, there is no consensus on the interaction between obesity and AD. The TgF344-AD rat model was used to investigate the effects of high carbohydrate, high fat (HCHF) diet on brain glucose metabolism and hemodynamics in the presence or absence of AD transgenes, in presymptomatic (6-month-old) vs. symptomatic (12-month-old) stages of AD progression using non-invasive neuroimaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!