Anti-Herbivore Activity of Oregonin, a Diarylheptanoid Found in Leaves and Bark of Red Alder (Alnus rubra).

J Chem Ecol

Department of Biology and Centre for Forest Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada.

Published: February 2021

Plants synthesize a wide range of bioactive secondary metabolites to defend against pests and pathogens. Red alder (Alnus rubra) bark, root, and leaf extract have a long history of use in traditional medicine and hygiene. Diarylheptanoids, especially oregonin ((5S)-1,7-bis(3,4-dihydroxyphenyl)-5-(β-D-xylopyranosyloxy)-heptan-3-one), have been identified as major bioactive constituents. Diarylheptanoids have become a focus of research following reports of their antioxidant, antifungal, and anti-cancer activities. Recent data suggest that high oregonin concentration is associated with resistance of red alder leaves to western tent caterpillar (Malacosoma californicum) defoliation. Here we test effects of this compound directly on leaf-eating insects. Purified oregonin was examined in insect choice and toxicity tests using lepidopteran caterpillars. The compound exhibited significant anti-feedant activity against cabbage looper (Trichoplusia ni), white-marked tussock moth (Orgyia leucostigma), fall webworm (Hyphantria cunea), and M. californicum at concentrations corresponding to oregonin content of the most resistant alder clones in previous experiments. Toxicity tests were carried out with cabbage looper larvae only, but no contact or ingested toxicity was detected. Our results suggest that oregonin at levels found in red alder leaves early in the growing season may contribute to protecting red alder from leaf-eating insects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10886-021-01244-3DOI Listing

Publication Analysis

Top Keywords

red alder
20
alder alnus
8
alnus rubra
8
alder leaves
8
leaf-eating insects
8
toxicity tests
8
cabbage looper
8
oregonin
6
alder
6
red
5

Similar Publications

A diagnostic host-specific transcriptome response for Mycoplasma pneumoniae pneumonia to guide pediatric patient treatment.

Nat Commun

January 2025

Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782, Calle San Francisco sn, Galicia, Spain.

Mycoplasma pneumoniae causes atypical pneumonia in children and young adults. Its lack of a cell wall makes it resistant to beta-lactams, which are the first-line treatment for typical pneumonia. Current diagnostic tests are time-consuming and have low specificity, leading clinicians to administer empirical antibiotics.

View Article and Find Full Text PDF

There have been frequent reports of more than one strain of the nitrogen-fixing symbiont, Frankia, in the same root nodule of plants in the genus Alnus, but quantitative assessments of their relative contributions have not been made to date. Neither has the diversity of other microbes, having potential functional roles in symbiosis, been systematically evaluated. Alnus rubra root nodule microbiota were studied using Illumina short read sequencing and kmer-based read classification.

View Article and Find Full Text PDF

We have synthesized a novel series of nitrogen-doped pentagon-embedded coumarinacenes, namely carbazole-coumarins, a tandem 1,4-elimination Diels-Alder aromatization reaction. These planar, -substituted carbazole-coumarins exhibit excellent functionalizability, enhanced photostability and solvent polarity-tunable absorption and blue-to-red emission with notably high fluorescence quantum yields, attesting to their remarkable photophysical properties. These attributes highlight the carbazole-coumarins' potential as robust and efficient fluorescent materials for diverse applications in various fields, including as probes for studying biomolecular systems and dynamics.

View Article and Find Full Text PDF

The revolutionary impact of photoredox catalytic processes has ignited novel avenues for exploration, empowering us to delve into nature in unprecedented ways and to pioneer innovative biotechnologies for therapy and diagnosis. However, integrating artificial photoredox catalysis into living systems presents significant challenges, primarily due to concerns over low targetability, low compatibility with complex biological environments, and the safety risks associated with photocatalyst toxicity. To address these challenges, herein, we present a novel bioorthogonally activatable photoredox catalysis approach.

View Article and Find Full Text PDF
Article Synopsis
  • * It forms a symbiotic relationship with actinobacterium, aiding in nitrogen fixation, which contributes to its desirable qualities.
  • * Research focused on analyzing red alder’s plant phenol metabolites through integrated transcriptome and metabolome studies to comprehend its biochemical pathways and enhance understanding of its medicinal and material benefits.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!