Although 70 % of the genome is transcribed to RNA in humans, only ∼2% of these transcripts are translated into proteins. The rest of the transcripts are defined as noncoding RNAs, including Long noncoding RNAs (LncRNAs) and MicroRNAs (miRNAs) that mostly function post-transcriptionally to regulate the gene expression. The outbreak of a novel coronavirus (SARS-CoV) has caused a major public health concern across the globe. The SARS-CoV is the seventh coronavirus that is known to cause human disease. There are currently no promising antiviral drugs with proven efficacy nor are there vaccines for its prevention. As of August 10, 2020, SARS-CoV has been infected more than 13 million cases in more than 213 countries, with an estimated mortality rate of ∼3 %. Thus, it is of utmost important priority to develop novel therapies for COVID-19. It is not fully investigated whether noncoding RNAs regulate signaling pathways that SARS-CoV involved in. Hence, computational analysis of the noncoding RNA interactions and determining importance of key regulatory noncoding RNAs in antiviral defense mechanisms will likely be helpful in developing new drugs to attack SARS-CoV infection. To elucidate this, we utilized bioinformatic approaches to find the interaction network of SARS-CoV/human proteins, miRNAs, and lncRNAs. We found TGF-beta signaling pathway as one of the potential interactive pathways. Furthermore, potential miRNAs/lncRNAs networks that the virus might engage during infection in human host cells have been shown. Altogether, TGF-beta signaling pathway as well as hub miRNAs, and LncRNAs involve during SARS-CoV pathogenesis can be considered as potential therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7386606PMC
http://dx.doi.org/10.1016/j.biopha.2020.110548DOI Listing

Publication Analysis

Top Keywords

noncoding rnas
16
sars-cov infection
8
human host
8
mirnas lncrnas
8
tgf-beta signaling
8
signaling pathway
8
sars-cov
7
noncoding
5
infection crosstalk
4
crosstalk human
4

Similar Publications

Chemotherapy resistance (CR) represents one of the most important barriers to effective oncological therapy and often leads to ineffective intervention and unfavorable clinical prognosis. Emerging studies have emphasized the vital significance of extracellular RNA (exRNA) in influencing CR. This thorough assessment intends to explore the multifaceted contributions of exRNA, such as exosomal RNA, microRNAs, long non-coding RNAs, and circular RNAs, to CR in cancer.

View Article and Find Full Text PDF

Recent Insights Into Wnt-Related tRNA-Derived Fragments (tRFs) in Human Diseases.

J Cell Biochem

January 2025

Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.

tRNA-derived fragments (tRFs) are a newly recognized class of small noncoding RNAs (sncRNAs) that play significant roles in various diseases. The Wnt pathway plays a key role in various physiological processes such as embryonic development, tissue renewal and regeneration. In the regulation of Wnt/β-catenin, Forkhead box k1(FOXK1), Frizzled class receptor 3 (FZD3), and Wnt5b can be targeted and inhibited by three tRFs: tRF3008A targets FOXK1 to inhibit colorectal cancer (CRC), 5'-tiRNAVal targets FZD3 to inhibit breast cancer (BrC), and tRF-22-8BWS7K092 targets Wnt5b to induce ferroptosis in lung cells.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is one of the most common bone disorders and has a serious impact on the quality of life of patients. LncRNA-HCP5 (HCP5) is downregulated in OA tissues. However, the latent function and regulatory mechanisms of HCP5 in OA are unclear.

View Article and Find Full Text PDF

Hearing loss (HL) is an otolaryngology disease susceptible to environmental pollutants. Volatile organic compounds (VOCs), as a class of chemical pollutants with evaporation propensity, pose a great threat to human health. However, the association between VOCs and HL remains unclear.

View Article and Find Full Text PDF

Non-Canonical TERT Activity Initiates Osteogenesis in Calcific Aortic Valve Disease.

Circ Res

January 2025

Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA. (R.A.C., C.C.C., R.W., A.C., C.B., C.R., W.J.M., M.J. Bashline, A.P., A.M.P., P.B., M.J. Brown, C.S.H.).

Background: Calcific aortic valve disease is the pathological remodeling of valve leaflets. The initial steps in valve leaflet osteogenic reprogramming are not fully understood. As TERT (telomerase reverse transcriptase) overexpression primes mesenchymal stem cells to differentiate into osteoblasts, we investigated whether TERT contributes to the osteogenic reprogramming of valve interstitial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!