Solution-processed lead halide perovskites are considered one of the promising materials for flexible optoelectronics. However, the array integration of ultrathin flexible perovskite photodetectors (PDs) remains a significant challenge limited by the incompatibility of perovskite materials with manufacturing techniques involving polar liquids. Here, an ultrathin (2.4 µm) and conformable perovskite-based PD array (10 × 10 pixels) with ultralight weight (3.12 g m ) and excellent flexibility, is reported. Patterned all-inorganic CsPbBr perovskite films with precise pixel position, controllable morphology, and homogenous dimension, are synthesized by a vacuum-assisted drop-casting patterning process as the active layer. The use of waterproof parylene-C film as substrate and encapsulation layer effectively protects the perovskite films against penetration of polar liquids during the peeling-off process. Benefitting from the encapsulation and ultrathin property, the device exhibits long-term stability in the ambient environment, and robust mechanical stability under bending or 50% compressive strain. More importantly, the ultrathin flexible PD arrays conforming to hemispherical support realize imaging of light distribution, indicating the potential applications in retina-like vision sensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202006006 | DOI Listing |
Acta Crystallogr E Crystallogr Commun
January 2025
Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine.
The title compound is a germanium-based hybrid metal halide that represents a less-toxic alternative to more popular lead-based analogues in optoelectronic applications. {(2-ICHNH)[GeI]} is composed of infinite inorganic layers that are formed by [GeI] octa-hedra connected in a corner-sharing manner with four equatorial I atoms. The organic (2-ICHNH) cations inter-leave the inorganic layers.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
CsPtI is a promising photoabsorber with a direct bandgap of 1.4 eV and a high carrier lifetime; however, the cost of Pt inhibits its commercial viability. Here, we performed a cost analysis and experimentally explored the effect of replacing Pt with earth-abundant Ni in solution-processed Cs(PtNi)(I,Cl) thin films on the properties and stability of the perovskite material.
View Article and Find Full Text PDFNanoscale
January 2025
Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, India.
Utilizing the soft-lattice nature of metal halide perovskites, we employ post-synthetic cross-ion exchange to synthesize a series of narrow band-gap colloidal nanocrystals of methylammonium-based lead iodide solid solutions of composition FAMAPbI, as well as those of triple-cation composition CsFAMAPbI (TCPbI). The ability to finely tune the compositions not only helps in tailoring the optical properties in the near-infrared region, but also improves the stability of these colloidal nanocrystals towards moisture, which has been demonstrated as compared to their bulk counterparts. The thermal stability of these solid solutions is also comparable to that of the bulk, as evidenced by thermogravimetric studies.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States.
Lead-free halide double perovskites (DPs) have become a research hotspot in the field of photoelectrons due to their unique optical properties and flexible compositional tuning. However, the luminescence of DPs exhibits thermal quenching at high temperatures, which severely affects their further application. Herein, we synthesized the rare earth Dy and transition metal Mn codoped CsNaYCl rare earth DPs and characterized the optical properties using temperature-dependent photoluminescence spectra and time-resolved photoluminescence decay profiles at different temperatures.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Physics, Faculty of Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!