Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused a global pandemic. RNA-dependent RNA polymerase (RdRp) is the key component of the replication or transcription machinery of coronavirus. Therefore SARS-CoV-2-RdRp has been chosen as an important target for the development of antiviral drug(s). During the early pandemic of the COVID-19, chloroquine and hydroxychloroquine were suggested by the researchers for the prevention or treatment of SARS-CoV-2. In our study, the antimalarial compounds have been screened and docked against SARS-CoV-2-RdRp (PDB ID: 7BTF), and it was observed that the antimalarials chloroquine, hydroxychloroquine, and amodiaquine exhibit good affinity. Since the crystal structure of SARS-CoV-2-RdRp with its substrate is not available, poliovirus-RdRp crystal structure co-crystallized with its substrate ATP (PDB ID: 2ILY) was used as a reference structure. The superimposition of SARS-CoV-2-RdRp and poliovirus-RdRp structures showed that the active sites of both of the RdRps superimposed very well. The amino acid residues involved in the binding of ATP in the case of poliovirus-RdRp and residues involved in binding with the antimalarial compounds with SARS-CoV-2-RdRp were compared. In both cases, the conserved residues were found to be involved in establishing the interactions. The MMGBSA and molecular dynamic simulation studies were performed to strengthen our docking results. Further residues involved in binding of antimalarials with SARS-CoV-2-RdRp were compared with the residues involved in the SARS-CoV-2-RdRp complexed with remdesivir [PDB ID: 7BV2]. It was observed that co-crystallized remdesivir and docked antimalarials bind in the same pocket of SARS-CoV-2 -RdRp.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842134 | PMC |
http://dx.doi.org/10.1080/07391102.2021.1871956 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!