Homology modeling and molecular docking simulation of some novel imidazo[1,2-a]pyridine-3-carboxamide (IPA) series as inhibitors of Mycobacterium tuberculosis.

J Genet Eng Biotechnol

Faculty of Physical sciences, Department of Chemistry, Ahmadu Bello University, P.M.B. 1044, Kaduna State, Zaria, Federal Republic of Nigeria.

Published: January 2021

Background: Tuberculosis (TB) remains a serious global health challenge that is caused by Mycobacterium tuberculosis and has killed numerous people. This necessitated the urgent need for the hunt and development of more potent drugs against the fast-emerging extensively drug-resistant (XDR) and multiple-drug-resistant (MDR) M. tuberculosis strains. Mycobacterium tuberculosis cytochrome b subunit of the cytochrome bc1 complex (QcrB) was recognized as a potential drug target in M. tuberculosis (25618/H37Rv) for imidazo[1,2-a]pyridine-3-carboxamides whose crystal strucuture is not yet reported in the Protein Data Bank (PDB). The concept of homology modeling as a powerful and useful computational method can be applied, since the M. tuberculosis QcrB protein sequence data are available.

Results: The homology model of QcrB protein in M. tuberculosis was built from the X-ray structure of QcrB in M. smegmatis as a template using the Swiss-Model online workspace. The modeled protein was assessed, validated, and prepared for the molecular docking simulation of 35 ligands of N-(2-phenoxy)ethyl imidazo[1,2-a] pyridine-3-carboxamide (IPA) to analyze their theoretical binding affinities and modes. The docking results showed that the binding affinity values ranged from - 6.5 to - 10.1 kcal/mol which confirms their resilience potency when compared with 6.0kcal/mol of isoniazid standard drug. However, ligands 2, 7, 22, 26, and 35 scored higher binding affinity values of - 9.60, - 9.80, - 10.10, - 10.00, and - 10.00 kcal/mol, and are respectively considered as the best ligands among others with better binding modes in the active site of the modeled QcrB protein.

Conclusion: The information derived in this research revealed some potential hits and paved a route for structure-based drug discovery of new hypothetical imidazo pyridine amide analogs as anti-tubercular drug candidates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817721PMC
http://dx.doi.org/10.1186/s43141-020-00102-1DOI Listing

Publication Analysis

Top Keywords

mycobacterium tuberculosis
12
homology modeling
8
molecular docking
8
docking simulation
8
tuberculosis
8
qcrb protein
8
binding affinity
8
affinity values
8
qcrb
5
modeling molecular
4

Similar Publications

The Spanish Society of Pneumology and Thoracic Surgery (SEPAR) and the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) have developed together Clinical Practice Guidelines (GPC) on the management of people affected by tuberculosis (TB) resistant to drugs with activity against Mycobacterium tuberculosis. These clinical practice guidelines include the latest updates of the SEPAR regulations for the diagnosis and treatment of drug-resistant TB from 2017 and 2020 as the starting point. The methodology included asking relevant clinical questions based on PICO methodology, a literature search focusing on each question, and a systematic and comprehensive evaluation of the evidence, with a summary of this evidence for each question.

View Article and Find Full Text PDF

Globally, drug-resistant tuberculosis (DR-TB) is responsible for 13% of mortality attributable to antimicrobial resistance. In Ethiopia, extrapulmonary tuberculosis (EPTB) is a significant public health challenge, and drug resistance (DR) in EPTB is often overlooked. In a cross-sectional study conducted between August 2022 and October 2023, we aimed to explore the magnitude of phenotypic drug resistance and identify genetic mutations linked to resistance using 189 Mycobacterium tuberculosis (MTB) isolates cultured from extrapulmonary clinical specimens.

View Article and Find Full Text PDF

Unlabelled: Crosstalk between autophagy, host cell death, and inflammatory host responses to bacterial pathogens enables effective innate immune responses that limit bacterial growth while minimizing coincidental host damage. ( ) thwarts innate immune defense mechanisms in alveolar macrophages (AMs) during the initial stages of infection and in recruited bone marrow-derived cells during later stages of infection. However, how protective inflammatory responses are achieved during infection and the variation of the response in different macrophage subtypes remain obscure.

View Article and Find Full Text PDF

Unlabelled: Mycobacterial cell envelopes are rich in unusual lipids and glycans that play key roles during infection and vaccination. The most abundant envelope glycolipid is trehalose dimycolate (TDM). TDM compromises the host response to mycobacterial species via multiple mechanisms, including inhibition of phagosome maturation.

View Article and Find Full Text PDF

Pathogen sequencing is an important tool for disease surveillance and demonstrated its high value during the COVID-19 pandemic. Viral sequencing during the pandemic allowed us to track disease spread, quickly identify new variants, and guide the development of vaccines. Tiled amplicon sequencing, in which a panel of primers is used for multiplex amplification of fragments across an entire genome, was the cornerstone of SARS-CoV-2 sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!