Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the present study, the complete mitochondrial genome of was determined using the next-generation sequencing. The circular genome was found to be 15,254 bp in length and had an overall nucleotide composition of 30.6% A, 14.1% C, 15.8% G, and 39.5% T. Similar to the typical caenogastropod mitochondrial genomes, it contained 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a potential control origin. All protein-coding genes started with standard initiation codons (ATA and ATG) and ended by TAA or TAG. The lengths of 12S ribosomal RNA and 16S ribosomal RNA were 948 and 1353 bp, respectively. The largest noncoding region considered to contain the origin of replication was 59 bp in length. The complete mitochondrial genome reported here would provide useful information for molecular phylogeny, genetic conservation, and sustainable management of .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7800891 | PMC |
http://dx.doi.org/10.1080/23802359.2018.1532829 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!