We assembled the mitogenome of the Bythograeid crab , using long-range amplification of the mitochondrial genome. The mitogenome is 15,521 base pair long (33.8% A, 21.7% C, 10.5% G, 34% T) with 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNAs, and a 624 bp AT-rich region. The gene arrangement is similar to other Brachyuran species. A whole genome shotgun sequencing approach revealed the presence of mitochondrial pseudogenes in the nuclear genome. This fifth mitogenome for a species of Bythograeidae should help resolve the puzzling question of the evolutionary origin of a family limited to deep-sea hydrothermal vents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7800491 | PMC |
http://dx.doi.org/10.1080/23802359.2017.1318674 | DOI Listing |
Probiotics Antimicrob Proteins
January 2025
Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
Limosilactobacillus reuteri DSM 17938 (L. reuteri DSM 17938) was one of the most widely used probiotics in humans for gastrointestinal disorders, but few studies have investigated its role in drug-induced liver injury (DILI). Here, we evaluated the efficacy of L.
View Article and Find Full Text PDFTrends Biochem Sci
January 2025
Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiyacho, Sakyo-Ku, Kyoto 606-8501, Japan. Electronic address:
DNA can fold into noncanonical left-handed Z-DNA conformation beyond the right-handed B-DNA. While its crystal structure was discovered nearly four decades ago, it was predominantly considered a structural curiosity. Recent evidence suggests that Z-DNA formation occurs in nuclear and mitochondrial DNA (mtDNA), with significant biological implications.
View Article and Find Full Text PDFStem Cell Res
January 2025
Division of Genetics and Metabolism - Department of Pediatrics, Center of Human Genomics and Precision Medicine, University of Wisconsin - School of Medicine and Public Health, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Electronic address:
We have described a novel mitochondrial disorder caused by biallelic pathogenic variants in the methionyl-tRNA synthetase 2 gene (MARS2), now termed Combined oxidative phosphorylation deficiency 25 (COXPD25). This study focuses on the generation and characterization of induced pluripotent stem cells (iPSCs) from fibroblasts of a patient with COXPD25. The resulting iPSC line ISMMSi060-A, carries the compound heterozygous variants c.
View Article and Find Full Text PDFLife Metab
February 2025
Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in the pentose phosphate pathway (PPP) in glycolysis. Glucose metabolism is closely implicated in the regulation of mitophagy, a selective form of autophagy for the degradation of damaged mitochondria. The PPP and its key enzymes such as G6PD possess important metabolic functions, including biosynthesis and maintenance of intracellular redox balance, while their implication in mitophagy is largely unknown.
View Article and Find Full Text PDFLife Metab
August 2024
State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!