The complete mitochondrial genome of sequence 16,859 bp of Indian clouded leopard () has been sequenced using next generation sequencing technology Torrent platform. The complete mitochondrial genome sequence of clouded leopard consists of 13 protein-coding, 22 tRNA, and two rRNA genes and a control region (CR). The mitochondrial genome is relatively similar to other felid mitochondrial genomes with respect to gene arrangement, composition, tRNA structures and skews of AT/GC bases to be typical of those reported for other mammals. The nucleotide composition of the genome shows that there is more A-T% than G-C% on the positive strand as revealed by positive AT and CG skews. The base composition of the mitochondrial genome of clouded leopard is as follows: A, 5362 bp (31.8%); C, 4560bp (27.0%); G, 2475 bp (14.6%); T, 4462 bp (26.4%). Most of the genes have ATG initiation codons, except ND1, ND2, ND3, ND4, ND6, and CYTB (ATA start codon).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7800050PMC
http://dx.doi.org/10.1080/23802359.2016.1214543DOI Listing

Publication Analysis

Top Keywords

mitochondrial genome
20
clouded leopard
16
complete mitochondrial
12
genome sequence
12
indian clouded
8
genome
6
mitochondrial
5
sequence indian
4
clouded
4
leopard
4

Similar Publications

CRISPR-Cas9 in Cardiovascular Medicine: Unlocking New Potential for Treatment.

Cells

January 2025

Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland.

Cardiovascular diseases (CVDs) remain a significant global health challenge, with many current treatments addressing symptoms rather than the genetic roots of these conditions. The advent of CRISPR-Cas9 technology has revolutionized genome editing, offering a transformative approach to targeting disease-causing mutations directly. This article examines the potential of CRISPR-Cas9 in the treatment of various CVDs, including atherosclerosis, arrhythmias, cardiomyopathies, hypertension, and Duchenne muscular dystrophy (DMD).

View Article and Find Full Text PDF

Large-bodied pelagic sharks are key regulators of oceanic ecosystem stability, but highly impacted by severe overfishing. One such species, the shortfin mako shark (), a globally widespread, highly migratory predator, has undergone dramatic population reductions and is now Endangered (IUCN Red List), with Atlantic Ocean mako sharks in particular assessed by fishery managers as overfished and in need of urgent, improved management attention. Genomic-scale population assessments for this apex predator species have not been previously available to inform management planning; thus, we investigated the population genetics of mako sharks across the Atlantic using a bi-organelle genomics approach.

View Article and Find Full Text PDF

Homozygous missense variant in causes early-onset neurodegeneration, leukoencephalopathy and autoinflammation.

J Med Genet

January 2025

Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada

Biallelic pathogenic variants in cause a fatal autosomal recessive multisystem disorder characterized by recurrent autoinflammation, hypomyelination, progressive neurodegeneration, microcephaly, failure to thrive, liver dysfunction, respiratory chain defects and accumulation of glycogen in skeletal muscle. No missense variants in have been reported to date.We report a 6-year-old boy with microcephaly, global developmental delays, lower limb spasticity with hyperreflexia, epilepsy, abnormal brain MRI, failure to thrive, recurrent fevers and transaminitis.

View Article and Find Full Text PDF

Evaluating genome-wide and targeted forensic sequencing approaches to kinship determination.

Forensic Sci Int Genet

January 2025

Department of Genetics, Genomics & Cancer Sciences, University of Leicester, University Road, Leicester, UK. Electronic address:

Kinship determination is a valuable tool in forensic genetics, with applications including familial searching, disaster victim identification, and investigative genetic genealogy. Conventional typing of small numbers of autosomal short tandem repeats (STRs) confidently identifies only first-degree relatives. Massively parallel sequencing (MPS) can access more STRs and resolve alleles identical by length but differing in sequence (isoalleles), which may increase the power of kinship estimation, particularly when combined with additional sequenced single nucleotide polymorphism (SNP) loci, as in the ForenSeq DNA Signature Prep kit.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) is often more susceptible to damage compared to nuclear DNA. This is due to its localization in the mitochondrial matrix, where a large portion of reactive oxygen species are produced. Mitochondria do not have histones and mtDNA is only slightly protected by histone-like proteins and is believed to have less efficient repair mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!