A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mathematical and intelligent modeling of stevia () leaves drying in an infrared-assisted continuous hybrid solar dryer. | LitMetric

Drying characteristics of stevia leaves were investigated in an infrared (IR)-assisted continuous-flow hybrid solar dryer. Drying experiments were conducted at the inlet air temperatures of 30, 40, and 50°C, air inlet velocities of 7, 8, and 9 m/s, and IR lamp input powers of 0, 150, and 300 W. The results indicated that inlet air temperature and IR lamp input power had significant effect on drying time ( < .05). A comparative study was performed among mathematical, Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy System (ANFIS) models for predicting the experimental moisture ratio (MR) of stevia leaves during the drying process. The ANN model was the most accurate MR predictor with coefficient of determination (R), root mean squared error (RMSE), and chi-squared error (χ) values of 0.9995, 0.0005, and 0.0056, respectively, on test dataset. These values of the ANFIS model on test dataset were 0.9936, 0.0243, and 0.0202, respectively. Among the mathematical models, the Midilli model was the best-fitted model to experimental MR values in most of the drying conditions. It was concluded that artificial intelligence modeling is an effective approach for accurate prediction of the drying kinetics of stevia leaves in the continuous-flow IR-assisted hybrid solar dryer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7802544PMC
http://dx.doi.org/10.1002/fsn3.2022DOI Listing

Publication Analysis

Top Keywords

stevia leaves
8
hybrid solar
8
solar dryer
8
dryer drying
8
inlet air
8
lamp input
8
mathematical intelligent
4
intelligent modeling
4
modeling stevia
4
drying
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!