The diversity and succession of microbial community and antioxidant activity present during the preparation of red raspberry Enzymes with and without starter cultures were investigated by high-throughput sequencing of 16S rRNA and ITS1 genes and correlation analysis of the microbial diversity and antioxidant activity. The results showed that the sample inoculated with mixed fermentation had higher antioxidant activity than the sample without inoculated fermentation. The antioxidant capacity of red raspberry Enzymes increased significantly as the fermentation time increased. Firmicutes and Ascomycota were the predominant phyla of bacteria and fungi in all samples. At the genus level, and were the predominating bacteria throughout the fermentation process. The genus dominated the fungal community of early-fermentation samples with microbial inoculated fermentation. spp. grew rapidly in the late stage of fermentation in the samples with spontaneous fermentation. Unweighted pair-group and PCA analysis revealed that the microbiota structures differed between the two groups. RDA and CCA showed that and had positive effects on the DPPH scavenging ability and other antioxidant indicators, and the total phenol content had a significant and positive correlation coefficient with . The results indicated that the fermentation by microorganisms significantly improves the oxidation resistance and helps to improve the quality of the red raspberry Enzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7802569PMC
http://dx.doi.org/10.1002/fsn3.1961DOI Listing

Publication Analysis

Top Keywords

antioxidant activity
16
red raspberry
16
raspberry enzymes
16
fermentation
9
microbial community
8
community antioxidant
8
activity sample
8
sample inoculated
8
inoculated fermentation
8
antioxidant
6

Similar Publications

The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.

View Article and Find Full Text PDF

Genes involved in DMSO-mediated yield increase of entomopathogenic nematodes.

Sci Rep

December 2024

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.

Entomopathogenic nematodes (EPNs) associated with their symbiotic bacteria can effectively kill insect pests, in agriculture, forestry and floriculture. Industrial-scale production techniques for EPNs have been established, including solid and liquid monoculture systems. It is found that supplement of 0.

View Article and Find Full Text PDF

Triphala is a traditional Ayurvedic herbal formulation composed of three fruits: amla (Phyllanthus emblica), bibhitaki (Terminalia bellerica), and haritaki (Terminalia chebula). Triphala is a potent Ayurvedic remedy that promotes digestion, detoxification, and overall wellness, while also providing antioxidant benefits through its trio of nutrient-rich fruits. In order to elucidate the individual contributions of the three ingredients of Triphala from molecular perspective, the individual ingredients were used for the untargeted LCMS/MS analysis.

View Article and Find Full Text PDF

This study aims to reduce engine emissions while maintaining engine performance and providing a sustainable fuel source for long-term use. It introduces a novel approach by combining pine oil (PO) and lemon grass oil (LGO) with diesel fuel in a specific ratio (10% PO + 10% LGO + 80% Diesel). This work is innovative in that it employs these two distinct low-viscosity biofuel blends in conjunction with diesel fuel in an agricultural engine, resulting in reduced carbon footprints in the tailpipe.

View Article and Find Full Text PDF

The impact of antioxidant-ciprofloxacin combinations on the evolution of antibiotic resistance in Pseudomonas aeruginosa biofilms.

NPJ Biofilms Microbiomes

December 2024

Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, 2200, Denmark.

The evolution of antimicrobial resistance (AMR) in biofilms, driven by mechanisms like oxidative stress, is a major challenge. This study investigates whether antioxidants (AOs) such as N-acetyl-cysteine (NAC) and Edaravone (ED) can reduce AMR in Pseudomonas aeruginosa biofilms exposed to sub-inhibitory concentrations of ciprofloxacin (CIP). In vitro experimental evolution studies were conducted using flow cells and glass beads biofilm models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!