Metamaterials are designed to realize exotic physical properties through the geometric arrangement of their underlying structural layout. Traditional mechanical metamaterials achieve functionalities such as a target Poisson's ratio or shape transformation through unit-cell optimization, often with spatial heterogeneity. These functionalities are programmed into the layout of the metamaterial in a way that cannot be altered. Although recent efforts have produced means of tuning such properties post-fabrication, they have not demonstrated mechanical reprogrammability analogous to that of digital devices, such as hard disk drives, in which each unit can be written to or read from in real time as required. Here we overcome this challenge by using a design framework for a tileable mechanical metamaterial with stable memory at the unit-cell level. Our design comprises an array of physical binary elements (m-bits), analogous to digital bits, with clearly delineated writing and reading phases. Each m-bit can be independently and reversibly switched between two stable states (acting as memory) using magnetic actuation to move between the equilibria of a bistable shell. Under deformation, each state is associated with a distinctly different mechanical response that is fully elastic and can be reversibly cycled until the system is reprogrammed. Encoding a set of binary instructions onto the tiled array yields markedly different mechanical properties; specifically, the stiffness and strength can be made to range over an order of magnitude. We expect that the stable memory and on-demand reprogrammability of mechanical properties in this design paradigm will facilitate the development of advanced forms of mechanical metamaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-020-03123-5 | DOI Listing |
Metab Brain Dis
January 2025
State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China.
Background: Radix Bupleuri is commonly used in treating depression and acute respiratory diseases such as SARS-CoV-2 infection in China. However, its underlying mechanism in treating major depressive disorder combined with SARS-CoV-2 infection remains unclear.
Aim: This study aims to elucidate the pharmacological mechanisms of Radix Bupleuri in treating major depressive disorder combined with SARS-CoV-2 infection, employing bioinformatics, network pharmacology, molecular docking, and dynamic simulation techniques.
The long-term effects of repeated COVID-19 vaccinations on adaptive immunity remain incompletely understood. Here, we conducted a comprehensive three-year longitudinal study examining T cell and antibody responses in 78 vaccinated individuals without reported symptomatic infections. We observed distinct dynamics in Spike-specific humoral and cellular immune responses across multiple vaccine doses.
View Article and Find Full Text PDFNanoscale
January 2025
Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
Chalcogenide phase-change materials (PCMs) are among the most mature candidates for next-generation memory technology. Recently, CrGeTe (CrGT) emerged as a promising PCM due to its enhanced amorphous stability and fast crystallization for embedded memory applications. The amorphous stability of CrGT was attributed to the complex layered structure of the crystalline motifs needed to initiate crystallization.
View Article and Find Full Text PDFJ Biol Phys
January 2025
Department of Mathematics, Vivekananda College, Thakurpukur, Kolkata, West Bengal, 700063, India.
A underlying complex dynamical behavior of double Allee effects in predator-prey system is studied in this article to understand the predator-prey relation more intensely from different aspects. We first propose a system with the Caputo sense fractional-order predator-prey system incorporating the Allee effect in prey populations to explain how the memory effect can change the different emergent states. Local stability analysis is analyzed by applying Matignon's condition for the FDE system.
View Article and Find Full Text PDFAdv Mater
January 2025
Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
HfO/ZrO-based ferroelectrics present tremendous potential for next-generation non-volatile memory due to their high scalability and compatibility with silicon technology. Unlike the continuous polar layers in perovskite ferroelectrics, HfO/ZrO-based ferroelectrics are composed of alternating polar layers with oxygen shifts and non-polar spacers, which leads to a distinct ferroelectric switching mechanism. However, directly observing the switching process has been a big challenge due to the polymorph feature of nanoscale fluorites and the difficulty in in situ imaging on light elements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!